Introduction LncRNAs play important roles in multiple diseases including asthma, while there are a few reports on the role of lncRNA H19 about asthma. This study aimed to investigate the roles and mechanisms of lncRNA H19 in asthma. Methods We detected lncRNA H19 and Muc5ac mRNA by establishing a murine asthma model and an in vitro inflammation model. Regulatory roles of lncRNA H19 in asthma were explored by lncRNA H19 overexpression or knockdown in vitro. To study its mechanisms, we detect p-NF-κB and p-Akt expression, and treated 16-HBE cells with inhibitors of PI3K. To study regulatory effects of miR-675-3p on Muc5ac, miR-675-3p mimics and inhibitors were respectively transfected into 16-HBE cells. Results Firstly, we established a murine asthma model and an in vitro inflammation model. We found that lncRNA H19 expression was decreased, while Muc5ac mRNA was increased in lung tissues of murine asthma model and in the in vitro inflammation model. lncRNA H19 overexpression increased Muc5ac mRNA expression and lncRNA H19 knockdown decreased Muc5ac mRNA expression in 16-HBE cells. Moreover, lncRNA H19 overexpression further increased Muc5ac expression in TNFα-induced in vitro inflammation model. lncRNA H19 knockdown decreased p-Akt and p-NF-κB expression. Inhibitors of PI3K abolished Muc5ac induced by lncRNA H19 overexpression. Although miR-675-3p was increased by lncRNA H19 overexpression, it had no regulatory effects on Muc5ac expression. Discussion These results demonstrated that lncRNA H19 positively regulates Muc5ac expression through PI3K/Akt /NF-κB pathway in the in vitro inflammation model. Therefore, this study indicated that decreased lncRNA H19 in asthma might play a protective role relieving mucus overproduction, and lncRNA H19 might be a potential target for asthma treatment.
Asthma is a complex chronic disease and the pathogenesis is still not entirely clear. In this study, we aimed to clarify the role and mechanism of miR-29b in the development of asthma. We observed that miR-29b levels were decreased in the lung and spleen of OVA-induced asthmatic mice. Reverse transcription-quantitative polymerase chain reaction and flow cytometry demonstrated that the inducible co-stimulator (ICOS) expression at mRNA and protein levels was elevated in the lung of asthmatic mice, and miR-29b expression in the lung of asthmatic mice was negatively associated with ICOS mRNA levels by Pearson Correlation analysis. Additional, flow cytometry showed that the percentage of CD4<sup>+</sup>ICOS<sup>+</sup> T cells in the lung and spleen was regulated by miR-29b, and dual luciferase reporter assay confirmed ICOS was a target gene of miR-29b. Furthermore, miR-29b overexpression in asthmatic mice was induced with miR-29b agomir by intranasal administration; miR-29b alleviated total inflammatory cell infiltration and CCL24 levels, decreased IL-5 levels in bronchoalveolar lavage fluid and serum, and upregulated IFN-γ expression in serum. This study demonstrates that miR-29b targets ICOS, thereby reverses the imbalance of T helper 1 cells (Th1)/Th2 responses and decreases eosinophils recruitment in the airway, which are key features of allergic airway inflammation. Therefore, miR-29b might be an attractive candidate target for asthma treatment.
Background and Purpose: Epidemiological and experimental studies suggest that microbial exposure in early childhood is linked with reduced risk to suffer asthma. Thus microbial components with immunoregulatory capabilities might serve as a preventive strategy for allergic asthma. Recently, it was identified that Streptococcus pneumoniae aminopeptidase N (PepN) could suppress T cell effector function. We sought to investigate the effect of PepN on murine allergic asthma and elucidate the underlying mechanism. Experimental Approach: The effects of intranasal administration of PepN during or before sensitization were examined in ovalbumin (OVA)-induced murine allergic asthma. The roles of CD11b + dendritic cells in PepN treated OVA-induced allergic asthma were evaluated by flow cytometry, cytokines detection and adoptive transfer. Moreover, the numbers of lung type 2 innate lymphoid cells (ILC2s) were also detected. Key Results: Administration of PepN during or before sensitization attenuated type-2 airway inflammation (eosinophilia, mucus hypersecretion, Th2 cytokines production and IgE production) in allergic asthma mice. PepN reduced lung accumulation of CD11b + dendritic cells, which was accompanied by diminished dendritic cellattracting chemokine CCL20 production as well as CCL17 and CCL22, which are Th2-cell chemokines predominantly produced by CD11b + dendritic cells. Adoptive transfer of BM-derived CD11b + dendritic cells abolished the inhibitory effect of PepN on OVA-induced type-2 airway inflammation. The numbers of lung ILC2s were decreased in asthmatic mice receiving PepN. Conclusion and Implications: PepN alleviated type-2 inflammation in OVA-induced allergic asthma mice, which was mediated by regulation of lung CD11b + dendritic cells. Our study provides a novel strategy for the prevention of allergic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.