Root canal retreatment: a retrospective investigation using regression and data mining methods for the prediction of technical quality and periapical healing Objectives: This study aimed to investigate patterns and risk factors related to the feasibility of achieving technical quality and periapical healing in root canal non-surgical retreatment, using regression and data mining methods. Methodology: This retrospective observational study included 321 consecutive patients presenting for root canal retreatment. Patients were treated by graduate students, following standard protocols. Data on medical history, diagnosis, treatment, and follow-up visits variables were collected from physical records and periapical radiographs and transferred to an electronic chart database. Basic statistics were tabulated, and univariate and multivariate analytical methods were used to identify risk factors for technical quality and periapical healing. Decision trees were generated to predict technical quality and periapical healing patterns using the J48 algorithm in the Weka software. Results: Technical outcome was satisfactory in 65.20%, and we observed periapical healing in 80.50% of the cases. Several factors were related to technical quality, including severity of root curvature and altered root canal morphology (p<0.05). Follow-up periods had a mean of 4.05 years. Periapical lesion area, tooth type, and apical resorption proved to be significantly associated with retreatment failure (p<0.05).Data mining analysis suggested that apical root resorption might prevent satisfactory technical outcomes even in teeth with straight root canals. Also, large periapical lesions and poor root filling quality in primary endodontic treatment might be related to healing failure. Conclusion: Frequent patterns and factors affecting technical outcomes of endodontic retreatment included root canal morphological features and its alterations resulting from primary endodontic treatment. Healing outcomes were mainly associated with the extent of apical periodontitis pathological damages in dental and periapical tissues. To determine treatment predictability, we suggest patterns including clinical and radiographic features of apical periodontitis and technical quality of primary endodontic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.