After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist 1,2. Here we present a human genome assembly that surpasses the continuity of GRCh38 2 , along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome 3 , we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes. Complete, telomere-to-telomere reference genome assemblies are necessary to ensure that all genomic variants are discovered and studied. At present, unresolved areas of the human genome are defined by multi-megabase satellite arrays in the pericentromeric regions and the ribosomal DNA arrays on acrocentric short arms, as well as regions enriched in segmental duplications that are greater than hundreds of kilobases in length and that exhibit sequence identity of more than 98% between paralogues. Owing to their absence from the reference, these repeat-rich sequences are often excluded from genetics and genomics studies, which limits the scope of association and functional analyses 4,5. Unresolved repeat sequences also result in unintended consequences; for example, paralogous sequence variants incorrectly being called as allelic variants 6 , and the contamination of bacterial gene databases 7. Completion of the entire human genome is expected to contribute to our understanding of chromosome function 8 , human disease 9 and genomic variation, which will improve technologies in biomedicine that use short-read mapping to a reference genome (for example, RNA sequencing (RNA-seq) 10 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) 11 and assay for transposase-accessible chromatin using sequencing (ATAC-seq) 12). The fundamental challenge of reconstructing a genome from many comparatively short sequencing reads-a process known as genome assembly-is distinguishing the repeated sequences from one another 13. Resolving such repeats relies on sequencing reads that are long enough to span the entire repeat or accurate enough to distinguish each repeat copy on the basis of...
After nearly two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has been finished end to end, and hundreds of unresolved gaps persist 1,2 . The remaining gaps include ribosomal rDNA arrays, large near-identical segmental duplications, and satellite DNA arrays. These regions harbor largely unexplored variation of unknown consequence, and their absence from the current reference genome can lead to experimental artifacts and hide true variants when re-sequencing additional human genomes. Here we present a de novo human genome assembly that surpasses the continuity of GRCh38 2 , along with the first gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome 3 , we reconstructed the ~2.8 megabase centromeric satellite DNA array and closed all 29 remaining gaps in the current reference, including new sequence from the human pseudoautosomal regions and cancer-testis ampliconic gene families (CT-X and GAGE). This complete chromosome X, combined with the ultra-long nanopore data, also allowed us to map methylation patterns across complex tandem repeats and satellite arrays for the first time. These results demonstrate that finishing the human genome is now within reach and will enable ongoing efforts to complete the remaining human chromosomes.Complete, telomere-to-telomere reference assemblies are necessary to ensure that all genomic variants, large and small, are discovered and studied. Currently, unresolved regions of the human genome are defined by multi-megabase satellite arrays in the pericentromeric regions and the rDNA arrays on acrocentric short arms, as well as regions enriched in segmental duplications that are greater than hundreds of kilobases in length and greater than 98% identical between paralogs. Due to their absence from the reference, these repeat-rich sequences are often excluded from contemporary genetics and genomics studies, limiting the scope of association and functional analyses 4,5 . Unresolved repeat sequences also result in unintended consequences such as paralogous sequence variants incorrectly called as allelic v ariants 6 and even the contamination of bacterial gene databases 7 . Completion of the entire human genome is expected to contribute to our understanding of chromosome function 8 and human disease 9 , and a comprehensive understanding of genomic variation will improve the driving technologies in biomedicine that currently use short-read mapping to a reference genome (e.g. RNA-seq 10 , ChIP-seq 11 , ATAC-seq 12 ).The fundamental challenge of reconstructing a genome from many comparatively short sequencing reads-a process known as genome assembly-is distinguishing the repeated sequences from one another 13 . Resolving such r...
Recent efforts to comprehensively characterize great ape genetic diversity using short-read sequencing and single-nucleotide variants have led to important discoveries related to selection within species, demographic history, and lineage-specific traits. Structural variants (SVs), including deletions and inversions, comprise a larger proportion of genetic differences between and within species, making them an important yet understudied source of trait divergence. Here, we used a combination of long-read and -range sequencing approaches to characterize the structural variant landscape of two additional Pan troglodytes verus individuals, one of whom carries 13% admixture from Pan troglodytes troglodytes. We performed optical mapping of both individuals followed by nanopore sequencing of one individual. Filtering for larger variants (>10 kbp) and combined with genotyping of SVs using short-read data from the Great Ape Genome Project, we identified 425 deletions and 59 inversions, of which 88 and 36, respectively, were novel. Compared with gene expression in humans, we found a significant enrichment of chimpanzee genes with differential expression in lymphoblastoid cell lines and induced pluripotent stem cells, both within deletions and near inversion breakpoints. We examined chromatin-conformation maps from human and chimpanzee using these same cell types and observed alterations in genomic interactions at SV breakpoints. Finally, we focused on 56 genes impacted by SVs in >90% of chimpanzees and absent in humans and gorillas, which may contribute to chimpanzee-specific features. Sequencing a greater set of individuals from diverse subspecies will be critical to establish the complete landscape of genetic variation in chimpanzees.
Background Zebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create ‘knockout’ models. In particular, the use of G0 mosaic mutants has potential to increase throughput of functional studies significantly but may suffer from transient effects of introducing Cas9 via microinjection. Further, a large number of computational and empirical tools exist to design CRISPR assays but often produce varied predictions across methods leaving uncertainty in choosing an optimal approach for zebrafish studies. Methods To systematically assess accuracy of tool predictions of on- and off-target gene editing, we subjected zebrafish embryos to CRISPR/Cas9 with 50 different guide RNAs (gRNAs) targeting 14 genes. We also investigate potential confounders of G0-based CRISPR screens by assaying control embryos for spurious mutations and altered gene expression. Results We compared our experimental in vivo editing efficiencies in mosaic G0 embryos with those predicted by eight commonly used gRNA design tools and found large discrepancies between methods. Assessing off-target mutations (predicted in silico and in vitro) found that the majority of tested loci had low in vivo frequencies (< 1%). To characterize if commonly used ‘mock’ CRISPR controls (larvae injected with Cas9 enzyme or mRNA with no gRNA) exhibited spurious molecular features that might exacerbate studies of G0 mosaic CRISPR knockout fish, we generated an RNA-seq dataset of various control larvae at 5 days post fertilization. While we found no evidence of spontaneous somatic mutations of injected larvae, we did identify several hundred differentially-expressed genes with high variability between injection types. Network analyses of shared differentially-expressed genes in the ‘mock’ injected larvae implicated a number of key regulators of common metabolic pathways, and gene-ontology analysis revealed connections with response to wounding and cytoskeleton organization, highlighting a potentially lasting effect from the microinjection process that requires further investigation. Conclusion Overall, our results provide a valuable resource for the zebrafish community for the design and execution of CRISPR/Cas9 experiments.
Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.