Epoxyeicosatrienoic acids (EETs) confer vasoactive and cardioprotective functions. Genetic analysis of the contributions of these short-lived mediators to pathophysiology has been confounded to date by the allelic expansion in rodents of the portion of the genome syntenic to human CYP2J2, a gene encoding one of the principle cytochrome P450 epoxygenases responsible for the formation of EETs in humans. Mice have eight potentially functional genes that could direct the synthesis of epoxygenases with properties similar to those of CYP2J2. As an initial step towards understanding the role of the murine Cyp2j locus, we have created mice bearing a 626-kb deletion spanning the entire region syntenic to CYP2J2, using a combination of homologous and site-directed recombination strategies. A mouse strain in which the locus deletion was complemented by transgenic delivery of BAC sequences encoding human CYP2J2 was also created. Systemic and pulmonary hemodynamic measurements did not differ in wild-type, null, and complemented mice at baseline. However, hypoxic pulmonary vasoconstriction (HPV) during left mainstem bronchus occlusion was impaired and associated with reduced systemic oxygenation in null mice, but not in null mice bearing the human transgene. Administration of an epoxygenase inhibitor to wild-type mice also impaired HPV. These findings demonstrate that Cyp2j gene products regulate the pulmonary vascular response to hypoxia.
Higher vertebrates have evolved innate and adaptive immune systems to defend against foreign substances and pathogens. Sophisticated regulatory circuits are needed to avoid inappropriate immune responses and inflammation. GPR108 is a seven-transmembrane family protein that activates NF-κB strongly when overexpressed. Surprisingly, its action in a physiological context is that of an antagonist of Toll-like receptor (TLR)-mediated signaling. Cells from Gpr108-null mice exhibit enhanced cytokine secretion and NF-κB and IRF3 signaling, whereas Gpr108-null macrophages reconstituted with GPR108 exhibit blunted signaling. Co-expression of TLRs and GPR108 reduces NF-κB and IFNβ promoter activation compared to expression of either TLRs or GPR108 alone. Upon TLR stimulation GPR108 abundance increases and the protein engages TLRs and their partners to reduce MyD88 expression and interfere with its binding to TLR4 through blocking MyD88 ubiquitination. In turn GPR108 is antagonized by TIRAP, an adaptor protein for TLR and MyD88. The interrelationships between GPR108 and innate immune signaling components are multifactorial and point to a membrane-associated signaling structure of significant complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.