Background Glioma is one of the deadliest human cancers. Although many therapeutic strategies for glioma have been explored, these strategies are seldom used in the clinic. The challenges facing the treatment of glioma not only involve the development of chemotherapeutic drugs and immunotherapeutic agents, but also the lack of a powerful platform that could deliver these two moieties to the targeted sites. Herein, we developed chemoimmunotherapy delivery vehicles based on C6 cell membranes and DC membranes to create hybrid membrane-coated DTX nanosuspensions (DNS-[C6&DC]m). Results Results demonstrated successful hybrid membrane fusion and nanosuspension functionalization, and DNS-[C6&DC]m could be used for different modes of anti-glioma therapy. For drug delivery, membrane coating could be applied to target the source cancer cells via a homotypic-targeting mechanism of the C6 cell membrane. For cancer immunotherapy, biomimetic nanosuspension enabled an immune response based on the professional antigen-presenting characteristic of the dendritic cell membrane (DCm), which carry the full array of cancer cell membrane antigens and facilitate the uptake of membrane-bound tumor antigens for efficient presentation and downstream immune n. Conclusion DNS-[C6&DC]m is a multifunctional biomimetic nano-drug delivery system with the potential to treat gliomas through tumor-targeted drug delivery combined with immunotherapy, thereby presenting a promising approach that may be utilized for multiple modes of cancer therapy. Graphical Abstract
Chromium poisoning has become one of the most common heavy metal poisoning occupational diseases with high morbidity and mortality. However, most antidotes detoxify the whole body and are highly toxic. To achieve hepato-targeted chromium poisoning detoxification, a novel hepato-targeted strategy was developed using aging erythrocyte membranes (AEMs) as biomimetic material coated with a dimercaptosuccinic acid (DMSA) nanostructured lipid carrier to construct a biomimetic nanodrug delivery system. The particle size, potential, drug loading, encapsulation rate, in vitro release, and stability of the nanoparticles (NPs) were characterized. Confocal microscopy and flow cytometry showed that the prepared NPs could be phagocytized by RAW264.7 macrophage cells. The efficacy of AEM-DMSA-NPs for targeted liver detoxification was evaluated by in vitro MTT analysis and an in vivo model of chromium poisoning. The results showed that the NPs could safely and efficiently achieve targeted liver chromium poisoning detoxification. All the results indicated that the biomimetic nanodrug delivery system mediated by aging erythrocyte membranes and containing DMSA nanoparticles could be used as a novel therapeutic drug delivery system potentially targeting liver detoxification.
Phase-separated films of water-insoluble ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be utilized to tailor drug release from coated pellets. In the present study, the effects of HPC levels and the pH, type, ionic strength and osmolarity of the media on the release profiles of soluble metoprolol succinates from the EC/HPC-coated pellets were investigated, and the differences in drug-release kinetics in multiple media were further elucidated through the HPC leaching and swelling kinetics of the pellets, morphology (SEM) and water uptake of the free films and the interaction between the coating polymers and the media compositions. Interestingly, the drug release rate from the pellets in different media was not in agreement with the drug solubility which have a positive correlation with the drug dissolution rate based on Noyes–Whitney equation law. In particular, the drug release rate in acetate buffer at pH 4.5 was faster than that in other media despite the solubility of drug was relatively lower, regardless of the HPC levels. It may be attributed to the mutual effect between the EC and acetate buffer, which improved the permeability of the film. In contrast, the release of drug in HCl solution was dependent on the HPC levels. Increasing the levels of HPC increased the effects of hydrogen ions on the polymer of HPC, which resulted in a lower viscosity and strength of the gel, forming the larger size of pores in polymer films, thus increasing the drug diffused from the coating film. Further findings in phosphate buffer showed a reduction in the drug release compared to that in other media, which was only sensitive to the osmolarity rather than the HPC level and pH of the buffer. Additionally, a mathematical theory was used to better explain and understand the experimentally measured different drug release patterns. In summary, the study revealed that the effects of the media overcompensated that of the drug solubility to some extent for controlled-release of the coating polymers, and the drug release mechanism in multiple media depend on EC and HPC rather than on HPC alone, which may have a potential to facilitate the optimization of ideally film-coated formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.