MicroRNAs (miRNAs) decrease the expression of specific target oncogenes or tumor suppressor genes and thereby play crucial roles in tumorigenesis and tumor growth. To date, the potential miRNAs regulating osteosarcoma growth and progression are not fully identified yet. In this study, the miRNA microarray assay and hierarchical clustering analysis were performed in human osteosarcoma samples. In comparison with normal human skeletal muscle, 43 miRNAs were significantly differentially expressed in human osteosarcomas (fold change ≥2 and p≤0.05). Among these miRNAs, miR-133a and miR-133b expression was decreased by 135 folds and 47 folds respectively and the decreased expression was confirmed in both frozen and paraffin-embedded osteosarcoma samples. The miR-133b precursor expression vector was then transfected into osteosarcoma cell lines U2-OS and MG-63, and the stable transfectants were selected by puromycin. We found that stable over-expression of miR-133b in osteosarcoma cell lines U2-OS and MG-63 inhibited cell proliferation, invasion and migration, and induced apoptosis. Further, over-expression of miR-133b decreased the expression of predicted target genes BCL2L2, MCL-1, IGF1R and MET, as well as the expression of phospho-Akt and FAK. This study provides a new insight into miRNAs dysregulation in osteosarcoma, and indicates that miR-133b may play as a tumor suppressor gene in osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.