The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin–phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin–phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin–phospholipid doping, irradiation intensity or irradiation duration. Porphyrin–phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy.
Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses.
Different culture conditions directed by the OSMAC (one strain-many compounds) approach drastically modified the metabolites of the fungus Spicaria elegans, which yielded the novel spicochalasin A (1), five new aspochalasins M-Q (2-6), and two known aspochalasins (7 and 8). The gross structures of 1-6 were elucidated by 1D and 2D NMR and MS methods, and their absolute configurations were determined by X-ray
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.