Kruppel-like factor 4 (KLF4), a member of the KLF family of transcription factors, has been considered as a crucial tumor suppressor in hepatocellular carcinoma (HCC). Using affinity purifications and mass spectrometry, we identified FBXO22, Cullin1 and SKP1 as interacting proteins of KLF4. We demonstrate that F-box only protein 22 (FBXO22) interacts with and thereby destabilizes KLF4 via polyubiquitination. As a result, FBXO22 could promote HCC cells proliferation both in vitro and in vivo. However, KLF4 deficiency largely blocked the proliferative roles of FBXO22. Importantly, FBXO22 expression was markedly increased in human HCC tissues, which was correlated with down-regulation of KLF4. Therefore, our results suggest that FBXO22 might be a major regulator of HCC development through direct degradation of KLF4.
BackgroundGene polymorphisms impact greatly on a person’s susceptibility to pulmonary tuberculosis (PTB). Macrophage receptor with collagenous structure (MARCO) and CD36 are two scavenger receptors (SRs) that can recognize Mycobacterium tuberculosis (Mtb) and play a key role in tuberculosis infection. Gene polymorphisms of MARCO and CD36 may contribute to tuberculosis risk.MethodsTo investigate whether genetic polymorphisms of MARCO and CD36 are associated with susceptibility to PTB, genomic DNA samples from patients (n = 202) and healthy controls (n = 216) were collected and analyzed by polymerase chain reaction with high-resolution melting analysis.ResultsWe studied two single nucleotide polymorphisms (SNPs) in MARCO (rs12998782 and rs17009726) and three SNPs in CD36 (rs1194182, rs3211956 and rs10499859). Rs12998782 (P = 0.018) might be associated with susceptibility to PTB. Rs1194182 (P < 0.01) and rs10499859 (P < 0.001) might be associated with resistance to PTB. Rs17009726 and rs3211956 were not associated with susceptibility/resistance to PTB.ConclusionsThese data showed that MARCO rs12998782 may increase PTB risk while two SNPs of CD36, rs1194182 and rs10499859 may reduce the risk, indicating MARCO and CD36 as important receptors in response to PTB.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-017-2595-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.