An effective, regioselective C-2 arylation of imidazo[2,1-b]thiazoles catalyzed by Cu(I) has been developed. This arylation proceeded smoothly without promotion of the ligands, and various functional (22 samples) groups were well tolerated. Preliminary mechanistic studies of this arylation are also reported.
Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.
An efficient procedure for p-toluenesulfonic acid-catalyzed iodination of isoquinolin-1(2H)-ones with N-iodosuccinimide under mild reaction conditions is reported. This methodology features scalable synthesis, wide substrate scope, and high functional-group tolerance.
A series of novel supramolecular organocatalysts of hydroxyprolinamide based on the upper rim of calix[4]arene scaffold have been developed to catalyze enantioselective multi-component Biginelli reaction. Under the optimal conditions, the reactions occurred with moderate-to-excellent enantioselectivities (up to 98% ee). A plausible transition state constructed by the supramolecular interaction of hydrogen bond and cation- between catalysts and substrates has been proposed.
supramolecular organocatalyst, calix[4]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.