Ferroptosis is a specific iron-dependent cell death form that can induce the production of lipid peroxide, but the roles of circular RNAs (circRNAs) in ferroptosis are completely unaware. Circ-interleukin-4 receptor (circIL4R) was reported to express highly in hepatocellular carcinoma (HCC). This study focused on the function of circIL4R dysregulation in tumor progression and ferroptosis of HCC, as well as its molecular mechanism. The quantitative real-time polymerase chain reaction was implemented for measuring RNA expression. Cell proliferation and survival were evaluated using 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide. Apoptotic cells were detected via flow cytometry. The quantification of protein expression was executed through western blotting analysis. The target binding was assessed via the dual-luciferase reporter, RNA immunoprecipitation, and RNA pulldown assays. The experiment in vivo was performed using a xenograft model. Cir-cIL4R was abnormally overexpressed in HCC tissues and cells. CircIL4R knockdown impeded oncogenesis and expedited ferroptosis of HCC cells. CircIL4R could directly sponge microRNA-541-3p (miR-541-3p) and miR-541-3p inhibition mitigated the effects of circIL4R knockdown on HCC cells. CircIL4R acted as a miR-541-3p sponge to regulate its target glutathione peroxidase 4 (GPX4). GPX4 upregulation relieved the miR-541-3p-induced tumor inhibition and ferroptosis aggravation. CircIL4R played an oncogenic role in HCC via the miR-541-3p/GPX4 axis in vivo. Our data suggested that circIL4R served for a tumor promoter and ferroptosis inhibitor in HCC by the miR-541-3p/GPX4 network.
Triple‐negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a poor prognosis. The microRNA‐200 (miR‐200) family has been associated with breast cancer metastasis. However, the epigenetic mechanisms underlying miR‐200b repression in TNBC are not fully elucidated. In this study, we found that MYC proto‐oncogene, bHLH transcription factor (MYC) and DNA methyltransferase 3A (DNMT3A) were highly expressed in TNBC tissues compared with other breast cancer subtypes, while miR‐200b expression was inhibited significantly. We demonstrated that MYC physically interacted with DNMT3A in MDA‐MB‐231 cells. Furthermore, we demonstrated that MYC recruited DNMT3A to the miR‐200b promoter, resulting in proximal CpG island hypermethylation and subsequent miR‐200b repression. MiR‐200b directly inhibited DNMT3A expression and formed a feedback loop in TNBC cells. MiR‐200b overexpression synergistically repressed target genes including zinc‐finger E‐box‐binding homeobox factor 1, Sex determining region Y‐box 2 (SOX2), and CD133, and inhibited the migration, invasion and mammosphere formation of TNBC cells. Our findings reveal that MYC can collaborate with DNMT3A on inducing promoter methylation and miR‐200b silencing, and thereby promotes the epithelial to mesenchymal transition and mammosphere formation of TNBC cells.
Chemical characteristics of a sample of foxtail millet bran and its oil, focusing on the approximate composition of foxtail millet bran and the fatty acid profile, physicochemical properties and tocopherol composition of foxtail millet bran oil, are presented in this work.The results indicate that the millet bran constituted 9.39 ± 0.17% crude oil, 12.48 ± 0.41% crude protein, and 51.69 ± 2.14% crude fiber. The specific gravity, refractive index, saponification value, and unsaponifiable matter content of millet bran oil were 0.9185 ± 0.0003 g/cm 3 d 20 20
The long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) has important roles in the regulation of multiple cell functions, such as proliferation, apoptosis and migration. However, the mechanism by which NEAT1 regulates breast cancer progression is not well elucidated. In the present study, NEAT1 and microRNA-124 (miR-124) levels were detected by reverse transcription-quantitative PCR in breast cancer tissues and cell lines. STAT3 protein levels were detected by western blot analysis. Cell proliferation and cell cycle distribution were determined using MTT and colony formation assays, and flow cytometry, respectively. The results demonstrated that NEAT1 and STAT3 expression levels were increased in breast cancer tissues compared with normal breast tissues, whereas miR-124 expression was significantly decreased. Functional analyses revealed that NEAT1 promoted cell proliferation and cell cycle progression in breast cancer cells. Additionally, NEAT1 and STAT3 expression levels were negatively correlated with miR-124 levels in breast cancer tissues. A direct interaction between miR-124, and NEAT1 and STAT3, was predicted by bioinformatics analysis and confirmed using a luciferase activity assay. NEAT1 overexpression markedly increased STAT3 protein expression levels, and this effect was reversed by miR-124 overexpression in breast cancer cells. Furthermore, miR-124 overexpression partially attenuated the effects of NEAT1 on breast cancer cell proliferation and cell cycle progression. The inhibitory effects of miR-124 overexpression on the proliferation rate and cell cycle progression were abolished by STAT3 overexpression. In turn, STAT3 silencing inhibited NEAT1 transcription in breast cancer cells. In summary, the present findings revealed that NEAT1 and STAT3 formed a feedback loop via sponging miR-124 to promote breast cancer progression.
Epoxides of soybean oil methyl esters (SMEs) are biodegradable, non-toxic, and renewable epoxy plasticizers. The objective of the present work was to investigate the effects of free fatty acids on the enzymatic epoxidation of SMEs. The results showed that the epoxidation of SMEs depended on the type of the added free fatty acid. For saturated ( C 18:0 ) and monounsaturated free fatty acids, the epoxy oxygen group content (EOC) of SMEs increased with increasing carbon chain length of free fatty acids; for branched-chain unsaturated free fatty acids, the EOC of SMEs decreased in the presence of hydroxyl group (OH) and hydroperoxide (OOH) of free fatty acids; the EOC of SMEs decreased with increasing number of double bonds of free fatty acids. The maximum EOC and the initial epoxidization rate (V 0 ) linearly decreased with increasing peroxide value of SMEs. The highest EOC (6.87 AE 0.3%) of SMEs was obtained using behenic acid as reaction material, which was similar with that of stearic acid (EOC 6.75 AE 0.2%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.