Objectives: To explore the correlation between multi-slice spiral CT (MSCT) perfusion parameters and the expression of vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase-2 (MMP-2) in breast cancer. Methods: Forty five breast cancer patients and 16 patients with benign breast tumor, both confirmed by pathology examination, were enrolled. All underwent MSCT perfusion imaging to obtain perfusion maps and data for parameters including blood flow (BF), blood volume (BV) and permeability surface (PS). Cancer patients did not receive treatment prior to surgery. The expression of VEGF and MMP-2 were examined with both immunohistochemistry and Western blotting. Results: The levels of VEGF and MMP-2 by immunohistochemistry were significantly higher in the breast cancer group (P < 0.01) than the benign tumor group. Relative OD values from Western blotting were also higher in cancer cases (P < 0.05). Similarly, the mean MSCT perfusion parameters (BF, BV, PS) were significantly higher in the breast cancer group (P < 0.01), BF and BV positively correlating with VEGF expression (r = 0.878 and 0.809 respectively, P < 0.01); PS and VEGF and MMP-2 expression were also positively correlated (r= 0.860, 0.786 respectively, P < 0.01). Conclusion: There is a correlation between breast cancer MSCT perfusion parameters and VEGF andMMP-2 expression, which might be useful for detection of breast lesions, qualitative diagnosis of breast cancer, and evaluation of breast cancer treatment.
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
To investigate the effect and potential mechanism of 3,3′-diindolylmethane (DIM) on ferroptosis against gastric cancer, cells proliferation, lipid reactive oxygen species (ROS) and GSH level were measured in the BGC-823 gastric cancer cells after DIM treatment. Western blotting was used to detect the expression of SLC7A11, GPX4, IP3R and BAP1. Results showed that DIM could induce ferroptosis in the BGC-823 gastric cancer cells via upregulating lipid-ROS level and decreasing GSH generation. Besides, DIM also significantly reduced the protein level of SLC7A11 and GPX4, which was an important regulator of ferroptosis. In addition, DIM promoted the protein level of BAP1 and IP3R in a concentration-dependent manner in the BGC-823 gastric cancer cells. The knockdown of BAP1 could reduce IP3R level and DIM-induced ferroptosis of gastric cancer cells. Taken together, these results indicated that DIM could induce ferroptosis to exert anti-cancer effects via BAP1-IP3R axis, suggesting its effective therapeutic potential in gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.