Polycystin-2 (PC2, TRPP2), the gene product of PKD2, whose mutations cause autosomal dominant polycystic kidney disease (ADPKD), belongs to the superfamily of TRP channels. PC2 is a non-selective cation channel, with multiple subconductance states. In this report, we explored structural and functional properties of PC2 and whether the conductance substates represent monomeric contributions to the channel complex. A kinetic analysis of spontaneous channel currents of PC2 showed that four intrinsic, non-stochastic subconductance states, which followed a staircase behavior, were both pH- and voltage-dependent. To confirm the oligomeric contributions to PC2 channel function, heteromeric PC2/TRPC1 channel complexes were also functionally assessed by single channel current analysis. Low pH inhibited the PC2 currents in PC2 homomeric complexes, but failed to affect PC2 currents in PC2/TRPC1 heteromeric complexes. Amiloride, in contrast, abolished PC2 currents in both the homomeric PC2 complexes and the heteromeric PC2/TRPC1 complexes, thus PC2/TRPC1 complexes have distinct functional properties from the homomeric complexes. The topological features of the homomeric PC2-, TRPC1- and heteromeric PC2/TRPC1 channel complexes, assessed by atomic force microscopy, were consistent with structural tetramers. TRPC1 homomeric channels had different average diameter and protruding height when compared with the PC2 homomers. The contribution of individual monomers to the PC2/TRPC1 hetero-complexes was easily distinguishable. The data support tetrameric models of both the PC2 and TRPC1 channels, where the overall conductance of a particular channel will depend on the contribution of the various functional monomers in the complex.
Autosomal dominant polycystic kidney disease (AD-PKD) is a prevalent genetic disorder largely caused by mutations in the PKD1 and PKD2 genes that encode the transmembrane proteins polycystin-1 and -2, respectively. Both proteins appear to be involved in the regulation of cell growth and maturation, but the precise mechanisms are not yet well defined. Polycystin-2 has recently been shown to function as a Ca 2؉ -permeable, non-selective cation channel. Polycystin-2 interacts through its cytoplasmic carboxyl-terminal region with a coiled-coil motif in the cytoplasmic tail of polycystin-1 (P1CC). The functional consequences of this interaction on its channel activity, however, are unknown. In this report, we show that P1CC enhanced the channel activity of polycystin-2. R742X, a disease-causing polycystin-2 mutant lacking the polycystin-1 interacting region, fails to respond to P1CC. Also, P1CC containing a diseasecausing mutation in its coiled-coil motif loses its stimulatory effect on wild-type polycystin-2 channel activity. The modulation of polycystin-2 channel activity by polycystin-1 may be important for the various biological processes mediated by this molecular complex.ADPKD 1 is a common genetic disorder caused by mutations in either one of the two genes, PKD1 and PKD2, that encode polycystin-1 and -2, respectively (1). Polycystin-1 is an 11-membranespanning desmosome-associated protein (2, 3) that may be involved in the regulation of cell growth (4). Polycystin-2 is a six-span membrane protein with homology to voltage-dependent (5) and transient receptor potential (TRP) channel proteins (6). Recently, we and others demonstrated that polycystin-2 indeed functions as a Ca 2ϩ -permeable nonselective cation channel (7-9).Mutations in either PKD1 or PKD2 cause nearly identical clinical manifestations, suggesting that these two proteins either interact directly or are components of a common signaling pathway (reviewed in Ref. 1). Polycystin-1 and -2 interact with each other through their carboxyl-terminal cytoplasmic tails both in vitro (10, 11) and in vivo (12). This interaction has been implicated in various cellular processes, including the activation of Jak and the consequent regulation of cell growth (4), the activation of whole-cell cation-permeable currents (13), and the regulation of G-protein signaling (14). The functional consequences of polycystin-1 interaction on polycystin-2 channel activity, however, have not been determined. Here, we demonstrate that binding of polycystin-2 to the coiled-coil-containing segment of the polycystin-1 carboxyl-tail (P1CC) increased and stabilized polycystin-2 channel function. In contrast, a single point mutation in P1CC, Q4215P, abolished the regulatory role on wild-type polycystin-2 channel function. Furthermore, the polycystin-2 truncation mutant R742X, an active channel (15) missing most of its cytoplasmic tail (including the polycystin-1 binding segment), was not regulated by P1CC. MATERIALS AND METHODSPlasmid Constructs-The PKD2 baculovirus expression construct p...
Polycystin-2, the product of the human PKD2 gene, whose mutations cause autosomal dominant polycystic kidney disease, is a large conductance, Ca 2؉ -permeable non-selective cation channel. Polycystin-2 is functionally expressed in the apical membrane of the human syncytiotrophoblast, where it may play a role in the control of fetal electrolyte homeostasis. Little is known, however, about the mechanisms that regulate polycystin-2 channel function. In this study, the role of pH in the regulation of polycystin-2 was assessed by ion channel reconstitution of both apical membranes of human syncytiotrophoblast and the purified FLAG-
Mucolipidosis type IV (MLIV) is a rare, neurogenetic disorder characterized by developmental abnormalities of the brain, and impaired neurological, ophthalmological, and gastric function. Considered a lysosomal disease, MLIV is characterized by the accumulation of large vacuoles in various cell types. Recent evidence indicates that MLIV is caused by mutations in MCOLN1, the gene that encodes mucolipin-1 (ML1), a 65-kDa protein showing sequence homology and topological similarities with polycystin-2 and other transient receptor potential (TRP) channels. In this report, our observations on the channel properties of ML1, and molecular pathophysiology of MLIV are reviewed and expanded. Our studies have shown that ML1 is a multiple sub-conductance, non-selective cation channel. MLIV-causing mutations result in functional differences in the channel protein. In particular, the V446L and DeltaF408 mutations retain channel function but have interesting functional differences with regards to pH dependence and Ca(2+) transport. While the wild-type protein is inhibited by Ca(2+) transport, mutant ML1 is not. Atomic force microscopy imaging of ML1 channels shows that changes in pH modify the aggregation and size of the ML1 channels, which has an impact on vesicular fusogenesis. The new evidence provides support for a novel role of ML1 cation channels in vesicular acidification and normal endosomal function.
The human syncytiotrophoblast (hST) is the most apical epithelial barrier that covers the villous tree of the human placenta. An intricate and highly organized network of cytoskeletal structures supports the hST. Recently, polycystin-2 (PC2), a TRP-type nonselective cation channel, was functionally observed in hST, where it may be an important player to Ca 2+ transport. Little is known, however, about channel regulation in hST. In this report, the regulatory role of actin dynamics on PC2 channels reconstituted from hST apical membranes was explored. Acute addition of cytochalasin D (CD, 5 µg ml −1 ) to reconstituted hST apical membranes transiently increased K + -permeable channel activity. The actin-binding proteins α-actinin and gelsolin, as well as PC2, were observed by Western blot and immunofluorescence analyses in hST vesicles. CD treatment of hST vesicles resulted in a re-distribution of actin filaments, in agreement with the effect of CD on K + channel activity. In contrast, addition of exogenous monomeric actin, but not prepolymerized actin, induced a rapid inhibition of channel function in hST. This inhibition was obliterated by the presence of CD in the medium. The acute (<15 min) CD stimulation of K + channel activity was mimicked by addition of the actin-severing protein gelsolin in the presence, but not in the absence, of micromolar Ca 2+ . Ca 2+ transport through PC2 triggers a regulatory feedback mechanism, which is based on the severing and re-formation of filamentous actin near the channels. Cytoskeletal structures may thus be relevant to ion transport regulation in the human placenta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.