One main foundation of Industry 4.0 is the connectivity of devices and systems using Internet of Things (IoT) technologies, where Cyber-physical systems (CPS) act as the backbone infrastructure based on distributed and decentralized structures. This approach provides significant benefits, namely improved performance, responsiveness and reconfigurability, but also brings some problems in terms of security, as the devices and systems become vulnerable to cyberattacks. This paper describes the implementation of several mechanisms to increase the security in a self-organized cyber-physical conveyor system, based on multi-agent systems (MAS) and build up with different individual modular and intelligent conveyor modules. For this purpose, the JADE-S add-on is used to enforce more security controls, also an Intrusion Detection System (IDS) is created supported by Machine Learning (ML) techniques that analyses the communication between agents, enabling to monitor and analyse the events that occur in the system, extracting signs of intrusions, together they contribute to mitigate cyberattacks.
The Internet of Things (IoT) is one of the main foundations of Industry 4.0, providing widespread connectivity of systems and devices, which promotes significant benefits, such as improved performance, responsiveness, and reconfigurability. However, it also brings some security problems, which make these devices and systems vulnerable to cyberattacks, consequently demanding efficient learning and training initiatives to address the challenges regarding the qualification of undergraduate students and active professionals to design more secure systems, as well as to be more aware of cyberthreats during the management and use of them. With this in mind, this paper describes a Capture the Flag competition based on IoT cybersecurity. The participants' feedback and performance evaluation show that this type of hands-on competition strongly contributes to learning the importance of cybersecurity in IoT-based applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.