This work presents a tool to help concept maps' design process. This tool was developed to organize contents from thematic modules of a course, applying concept maps techniques. In this tool, teachers can build their own concept maps based in textual reference documents. Teachers also can use a visual editor to design maps and linking learning objects to concepts. Students can access learning objects and make their own notes in their own concept maps improving teaching and learning process. The concept map extractor is an algorithm based in text mining techniques for term extraction. This algorithm extracts relevant terms that can be considered concepts or links, making agile the concept map building process.
Abstract.A well-known problem faced by any organization nowadays is the high volume of data that is available and the required process to transform this volume into differential information. In this study, a case-comparison study of automatic document classification (ADC) approach is presented, utilizing both serial and parallel paradigms. The serial approach was implemented by adopting the RapidMiner software tool, which is recognized as the worldleading open-source system for data mining. On the other hand, considering the MapReduce programming model, the Hadoop software environment has been used. The main goal of this case-comparison study is to exploit differences between these two paradigms, especially when large volumes of data such as Web text documents are utilized to build a category database. In the literature, many studies point out that distributed processing in unstructured documents have been yielding efficient results in utilizing Hadoop. Results from our research indicate a threshold to such efficiency.
A proposta deste trabalho contempla uma comunidade de agentes BDI aplicando lógica fuzzy no intuito de classificar estudantes em grupos pré-determinados. O objetivo dessa classificação é conduzir o estudante para uma utilização mais apropriada do ambiente de ensino-aprendizagem. Neste intuito utilizou-se a lógica fuzzy, pois ela permite modelar crenças sobre o nível de conhecimento do estudante. Os parâmetros do modelo proposto foram extraídos por meio de análise estatística. O foco dessa pesquisa é construir uma arquitetura BDI genérica o suficiente para que possa ser integrada a qualquer Ambiente Virtual de Aprendizagem (AVA). A arquitetura de Sistemas Multiagentes (SMA) foi implementada em um ambiente web desenvolvido em PHP. Os resultados da integração destas tecnologias bem como a proposta de adaptar o AVA foram validados pela comparação entre o desempenho fuzzy estimado pelo AVA e o desempenho nas avaliações presenciais. E indicam uma forte correlação entre os resultados das avaliações, o que pode contribuir com o processo de ensino-aprendizagem dos estudantes, principalmente para aqueles que sentem mais dificuldades na aprendizagem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.