The Directed Steiner Tree (DST) problem is a cornerstone problem in network design. We focus on the generalization of the problem with higher connectivity requirements. The problem with one root and two sinks is APX-hard. The problem with one root and many sinks is as hard to approximate as the directed Steiner forest problem, and the latter is well known to be as hard to approximate as the label cover problem. Utilizing previous techniques, we strengthen these results and extend them to undirected graphs. Specifically, we give an Ω( k ϵ ) hardness bound for the rooted k -connectivity problem in undirected graphs. As a consequence, we obtain an Ω( k ϵ ) hardness bound for the undirected subset k -connectivity problem. Additionally, we give a result on the integrality ratio of the natural linear programming relaxation of the directed rooted k -connectivity problem.
No abstract
We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω( √ n) even for planar graphs [14] due to a simple topological obstruction and a major focus, following earlier work [17], has been understanding the gap if some constant congestion is allowed. In planar graphs the integrality gap is O(1) with congestion 2 [23, 7]. In general graphs, recent work has shown the gap to be polylog(n) [10, 11] with congestion 2. Moreover, the gap is log Ω(c) n in general graphs with congestion c for any constant c ≥ 1 [1]. It is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is minor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to k-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of k-sums of bounded genus graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.