The concurrent enhancement of the short-circuit current (JSC) and open-circuit voltage (VOC) is a key problem in the preparation of efficient organic solar cells (OSCs). In this paper, we report...
Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐term stability owing to excessive molecular aggregation and unfavorable phase separation. Thus, novel p‐type polymers are required for high‐efficiency and long‐lived PSCs that can be processed in ecofriendly nonhalogenated solvents. Herein, a novel series of 1D/2A terpolymers (PBTPBD) composed of 4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐F), 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo‐[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD), and 1,3‐bis‐(4‐hexylthiophen‐2‐yl)‐5‐octyl‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (HT‐TPD) is synthesized and characterized for high‐efficiency and long‐lived PSCs. A PBTPBD‐50:IT‐4F blended film exhibits a favorable face‐on orientation and superior hole and electron mobility. Therefore, the corresponding PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, exhibits a high PCE of 13.64%, which is 13% higher than that of the related nonhalogenated solvent‐processed PSCs. Furthermore, the PBTPBD‐50:IT‐4F PSC maintains 82% of the initial PCE even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. The high‐efficiency and superior long‐term thermal stability of the PBTPBD‐50:IT‐4F PSC are attributed to the excellent miscibility of PBTPBD‐50 and IT‐4F and the suppression of the morphological changes in the photoactive layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.