Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications.
Local-gate multilayer MoS2 phototransistors exhibit a photoresponsivity of up to 342.6 A W(-1) , which is higher by 3 orders of magnitude than that of global-gate multilayer MoS2 phototransistors. These simulations indicate that the gate underlap is critical for the enhancement of the photoresponsivity. These results suggest that high photoresponsivity can be achieved in indirect-bandgap multilayer MoS2 phototransistors by optimizing the optoelectronic design.
Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.
Molybdenum disulfide (MoS) field-effect transistor (FET)-based biosensors have attracted significant attention as promising candidates for highly sensitive, label-free biomolecule detection devices. In this paper, toward practical applications of biosensors, we demonstrate reliable and quantitative detection of a prostate cancer biomarker using the MoS FET biosensor in a nonaqueous environment by reducing nonspecific molecular binding events and realizing uniform chemisorption of anti-PSA onto the MoS surface. A systematic and statistical study on the capability of the proposed device is presented, and the biological binding events are directly confirmed and characterized through intensive structural and electrical analysis. Our proposed biosensor can reliably detect various PSA concentrations with a limit of 100 fg/mL. Moreover, rigorous theoretical simulations provide a comprehensive understanding of the operating mechanism of the MoS FET biosensors, and further suggests the enhancement of the sensitivity through engineering device design parameters.
Indirect bandgap of multilayer molybdenum disulfide has been recognized as a major hindrance to high responsivity of MoS2 phototransistors. Here, to overcome this fundamental limitation, we propose a structural engineering of MoS2 via nano-patterning using block copolymer lithography. The fabricated nanoporous MoS2, consisting of periodic hexagonal arrays of hexagon nanoholes, includes abundant edges having a zigzag configuration of atomic columns with molybdenum and sulfur atoms. These exposed zigzag edges are responsible for multiple trap states in the bandgap region, as confirmed by photo-excited charge-collection spectroscopy measurements on multilayer nanoporous MoS2 phototransistors, showing that in-gap states only near the valence band can result in a photogating effect. The effect of nano-patterning is therefore to significantly enhance the responsivity of multilayer nanoporous MoS2 phototransistors, exhibiting an ultra-high photoresponsivity of 622.2 A W−1. Our nano-patterning of MoS2 for photosensing application paves a route to structural engineering of two-dimensional materials for highly sensitive and responsive optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.