Abstract. The ESA X-ray Multi Mirror mission, XMM-Newton, carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows highresolution (E/∆E = 100 to 500) measurements in the soft X-ray range (6 to 38Å or 2.1 to 0.3 keV) with a maximum effective area of about 140 cm 2 at 15Å. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon, as well as the L shell transitions of iron. The present paper gives a full description of the design of the RGS and its operational modes. We also review details of the calibrations and in-orbit performance including the line spread function, the wavelength calibration, the effective area, and the instrumental background.
Aims. This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods. The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480−1250 GHz with SIS mixers and the 1410−1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s −1 . Results. After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations.
We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51-220 μm range with a mean resolving power of ∼3000, and complemented by a dedicated observation of CH 4 at 120 μm. Numerous spectral features due to HD (R(0) and R(1)), H 2 O, CH 4 , and CO are present, but so far no new species have been found. Our results indicate that (i) Neptune's mean thermal profile is warmer by ∼3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5 ± 1) × 10 −5 , confirming the enrichment of Neptune in deuterium over the protosolar value (∼2.1 × 10 −5 ); (iii) the CH 4 mixing ratio in the mid stratosphere is (1.5 ± 0.2) × 10 −3 , and CH 4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH 4 stratospheric injection from Neptune's warm south polar region; (iv) the H 2 O stratospheric column is (2.1 ± 0.5) × 10 14 cm −2 but its vertical distribution is still to be determined, so the H 2 O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations.
The fast neutron flux in near‐Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3° to 177° in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground‐level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.