The present study is to clarify the present influences of acid concentration and temperature of caustic hydrothermal method on extracting the titanium dioxide (TiO2) from synthetic rutile waste. In this experimental work, the caustic hydrothermal method comprises two processes: a decomposition and the sulphate process. The extracted titanium is characterized by using a electron dispersive X-ray spectroscopy to specify its chemical composition, field emission scanning electron microscope to determine the morphology and particle size, and lastly it is the X-ray diffraction to analyse the crystallinity of extracted titanium. In this study, we found that both acid concentration and temperature affected the TiO2 growth while the calcination process could improve the crystallinity of extracted titanium.
In this paper, we propose a method for prototyping cantilever sensors by means of a modification of commercial atomic force microscopy cantilevers, using electron beam lithography and focused ion beam milling. To overcome obstacles with resist coating related to spin-coating of nonplanar 3D substrates, in this case of free-standing cantilevers, we propose a modified method based on spin-coating technique. An auxiliary atomic force microscopy chip was inserted below the cantilever to quasi-planarize the surface during spin-coating of electron beam resist. Magnetic micro-ellipses were prepared at the free-end of the cantilever by electron beam lithography. We propose a design of a cantilever sensor for the study of magnetic coupling between two cantilevers, prepared by focused ion beam milling. In ideal case, the coupling could be detected by a shift in resonance peaks. Attractive and repulsive forces between magnetic structures were shown by magnetic force microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.