Articles you may be interested inEtching selectivity of indium tin oxide to photoresist in high density chlorine-and ethylene-containing plasmas J. Vac. Sci. Technol. B 31, 021210 (2013); 10.1116/1.4795209 Efficient and reliable green organic light-emitting diodes with Cl2 plasma-etched indium tin oxide anode
Indium tin oxide (ITO) thin films doped with Au, Ni, or Pt (3.5 at.% to 10.5 at.%) were deposited on p-GaN epilayers (Mg $4 9 10 19 cm À3 ) using direct-current (DC) sputter codeposition. It was found that undoped ITO contacts to p-GaN exhibited leaky Schottky behavior, whereas the incorporation of a small amount of Au (3.5 at.% to 10.5 at.%) significantly improved their ohmic characteristics. Compared with standard Ni/ITO contacts, the Au-doped ITO contacts had a similar specific contact resistance in the low 10 À2 X cm À2 range, but were more stable above 600°C and more transparent at blue wavelengths. These results provide support for the use of Au-doped ITO ohmic contact to p-type GaN in high-brightness blue light-emitting diodes.
Combining optics and microfluidics to create a portable optofluidic photonic crystal (PhC) biosensor is an approach with promising applications in the fields of counter-terrorism, agricultural sciences, and health sciences. Presented here are fabrication processes of a gallium nitride (GaN)-based PhC biosensor with a resonance-enhanced fluorescence detection mechanism that shows potential for meeting the single molecule detection requirements of these application areas. GaN is being targeted as the photonic crystal slab material for two main reasons: its transparency in the visible spectral range, within which the excitation and emission wavelengths of the commercial fluorescent-labeling dyes fall, and its intrinsic thermal stability which provides an increased flexibility of operating in different environments. Optical modeling efforts indicate a 25-fold enhancement of the fluorescent emission in this portable fluorescentbased PhC biosensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.