Room temperature distributed-feedback (DFB) laser operation is demonstrated with emission wavelengths ranging from 389 to 399 nm. Second-order DFB gratings were defined by electron beam lithography and reactive ion etching in the top GaN barrier layer of a GaInN/GaN double heterostructure grown by metalorganic vapor phase epitaxy. Our data allow a precise determination of the effective refractive index neff(λ) over the whole emission range. neff(λ) is compared with previously published values for GaN and GaInN.
The dependence of the In-incorporation efficiency and the optical properties of MOVPE-grown GaInN/GaN-heterostructures on various growth parameters has been investigated. A significant improvement of the In-incorporation rate could be obtained by increasing the growth rate and reducing the H 2 -partial pressure in the MOVPE reactor. However, GaInN layers with a high In-content typically show an additional low energy photoluminescence peak, whose distance to the band-edge increases with increasing In-content. For GaInN/GaN quantum wells with an In-content of approximately 12%, an increase of the well thickness is accompanied by a significant line broadening and a large increase of the Stokes shift between the emission peak and the band edge determined by photothermal deflection spectroscopy. With a further increase of the thickness of the GaInN layer, a second GaInN-correlated emission peak emerges. To elucidate the nature of these optical transitions, power-dependent as well as time-resolved photoluminescence measurements have been performed and compared to the results of scanning transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.