Recent reports have associated NCF2, encoding a core component of the multi-protein NADPH oxidase (NADPHO), with systemic lupus erythematosus (SLE) susceptibility in individuals of European ancestry. To identify ethnicity-specific and -robust variants within NCF2, we assessed 145 SNPs in and around the NCF2 gene in 5325 cases and 21 866 controls of European-American (EA), African-American (AA), Hispanic (HS) and Korean (KR) ancestry. Subsequent imputation, conditional, haplotype and bioinformatic analyses identified seven potentially functional SLE-predisposing variants. Association with non-synonymous rs17849502, previously reported in EA, was detected in EA, HS and AA (P(EA) = 1.01 × 10(-54), PHS = 3.68 × 10(-10), P(AA) = 0.03); synonymous rs17849501 was similarly significant. These SNPs were monomorphic in KR. Novel associations were detected with coding variants at rs35937854 in AA (PAA = 1.49 × 10(-9)), and rs13306575 in HS and KR (P(HS) = 7.04 × 10(-7), P(KR) = 3.30 × 10(-3)). In KR, a 3-SNP haplotype was significantly associated (P = 4.20 × 10(-7)), implying that SLE predisposing variants were tagged. Significant SNP-SNP interaction (P = 0.02) was detected between rs13306575 and rs17849502 in HS, and a dramatically increased risk (OR = 6.55) with a risk allele at each locus. Molecular modeling predicts that these non-synonymous mutations could disrupt NADPHO complex assembly. The risk allele of rs17849501, located in a conserved transcriptional regulatory region, increased reporter gene activity, suggesting in vivo enhancer function. Our results not only establish allelic heterogeneity within NCF2 associated with SLE, but also emphasize the utility of multi-ethnic cohorts to identify predisposing variants explaining additional phenotypic variance ('missing heritability') of complex diseases like SLE.
The nitrone compound PBN, α-phenyl-tert-butylnitrone, and closely related nitrones have anti-cancer activity in several experimental cancer models. The three experimental models most extensively studied include A) the rat choline deficiency liver cancer model, B) the rat C6 glioma model and C) the mouse APCMin/+ colon cancer model. The two PBN-nitrones mostly studied are PBN and a PBN derivative 2,4-disulfophenyl-tert-butylnitrone, referred as OKN-007. OKN-007 is a proprietary compound that has had extensive commercial development (designated as NXY-059) for another indication, acute ischemic stroke, and after extensive clinical studies was shown to lack efficacy for this indication but was shown to be very safe for human use. This compound administered orally in the rat glioma model has potent activity in treating fully formed gliomas. In this report observations made on the PBN-nitrones in experimental cancer models will be summarized. In addition the experimental results will be discussed in the general framework of the properties of the compounds with a view to try to understand the mechanistic basis of how the PBN-nitrones act as anti-cancer agents. Possible mechanisms related to the suppression of NO production, S-nitrosylation of critical proteins and inhibition of NF-κB activation are discussed.
A series of novel thioxothiazolidin-4-one derivatives 5(a-g) were synthesized by the coupling of different amines containing aliphatic, substituted aromatic, and heterocyclic moieties, such as oxadiazol, pyrazole, isoxazole, and piperazine with 2-(5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid. All compounds were characterized by 1 H NMR, LCMS, FTIR and elemental analysis. In this study, we investigated the possibility that these novel thioxothiazolidin-4-one derivatives 5(a-g) inhibits tumor growth and tumor induced angiogenesis using mouse Ehrlich Ascites Tumor (EAT) as a model system. Our results demonstrated that the compounds significantly reduced ascites tumor volume, cell number, and increased the life span of EAT-bearing mice. In addition, the compounds manifested strong antiangiogenic effects and suppressed tumor induced endothelial proliferation in the mice peritoneum. From our findings, it is noted that the derivatives 5(a-e) may be possible candidates for anticancer therapy with the ability to inhibit tumor angiogenesis and tumor cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.