In this paper the symbol by symbol MAP algorithm is parallelized leading to a purely feedforward block processing architecture for high speed soft output channel decoding. Using a novel algebraic formulation of the MAP algorithm, an algorithmic modification is discussed resulting in a large decrease in complexity. A concatena.ted decoding system employing the soft output MAP algorithm compares favorably with parallel Viterbi decoders using a standard code, which is proved by a high speed system example.
At present, the Viterbi algorithm (VA) is widely used in communication systems for decoding and equalization. The achievable speed of conventional Viterbi decoders (VD's) is limited by the inherent nonlinear add-compare-select (ACS) recursion. The aim of this paper is to describe system design and VLSI implementation of a complex system of fabricated ASIC's for high speed Viterbi decoding using the "minimized method" (MM) parallelized VA. We particularly emphasize the interaction between system design, architecture and VLSI implementation as well as system partitioning issues and the resulting requirements for the system design flow. Our design objectives were 1) to achieve the same decoding performance as a Conventional VD using the parallelized algorithm, 2) to achieve a speed of more than 1 Gb/s, and 3) to realize a system for this task using a single cascadable ASIC. With a minimum system configuration of four identical ASIC's produced by using 1.0 p CMOS technology, the design objective of a decoding speed of 1.2 Gb/s is achieved. This means, compared to previous implementations of Viterbi decoders, the speed is increased by an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.