In the present work we explore some aspects of energy harvesting from unsteady, turbulent fluid flow using piezoelectric generators. Turbulent flows exhibit a large degree of coherence in their spatial and temporal scales, which provides a unique opportunity for energy harvesting. The voltage generated by short, flexible piezoelectric cantilever beams placed inside turbulent boundary layers and wakes of circular cylinders at high Reynolds numbers is investigated. Matching the fluid flow’s predominant frequency with the natural frequency of the piezoelectric generator appears to maximize the piezoelectric output voltage. This voltage is also dependent on the generator’s location inside the flow field. A three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration, and electrical response of the piezoelectric generator has been developed. The simulation results agree reasonably well with the experimental data paving the way of using such a tool to estimate the performance of different energy harvesting devices within unsteady flow fields.
The available power in a flowing fluid is proportional to the cube of its velocity, and this feature indicates the potential for generating substantial electrical energy by exploiting the direct piezoelectric effect. The present work is an experimental investigation of a self-excited piezoelectric energy harvester subjected to a uniform and steady flow. The harvester consists of a cylinder attached to the free end of a cantilevered beam, which is partially covered by piezoelectric patches. Due to fluid–structure interaction phenomena, the cylinder is subjected to oscillatory forces, and the beam is deflected accordingly, causing the piezoelectric elements to strain and thus develop electric charge. The harvester was tested in a wind tunnel and it produced approximately 0.1 mW of non-rectified electrical power at a flow speed of 1.192 m s−1. The aeroelectromechanical efficiency at resonance was calculated to be 0.72%, while the power per device volume was 23.6 mW m−3 and the power per piezoelectric volume was 233 W m−3. Strain measurements were obtained during the tests and were used to predict the voltage output by employing a distributed parameter model. The effect of non-rigid bonding on strain transfer was also investigated. While the rigid bonding assumption caused a significant (>60%) overestimation of the measured power, a non-rigid bonding model gave a better agreement (<10% error).
Currently, there are no reliable ex vivo models
that predict anticancer drug responses in human tumors accurately.
A comprehensive method of mimicking a 3D microenvironment to study
effects of anticancer drugs on specific cancer types is essential.
Here, we report the development of a three-dimensional microfluidic
cell array (3D μFCA), which reconstructs a 3D tumor microenvironment
with cancer cells and microvascular endothelial cells. To mimic the in vivo spatial relationship between microvessels and nonendothelial
cells embedded in extracellular matrix, three polydimethylsiloxane
(PDMS) layers were built into this array. The multilayer property
of the device enabled the imitation of the drug delivery in a microtissue
array with simulated blood circulation. This 3D μFCA system
may provide better predictions of drug responses and identification
of a suitable treatment for a specific patient if biopsy samples are
used. To the pharmaceutical industry, the scaling-up of our 3D μFCA
system may offer a novel high throughput screening tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.