The blazar 3C 279, one of the brightest identified extragalactic objects in the γ-ray sky, underwent a large (factor of ∼10 in amplitude) flare in γ-rays towards the end of a 3-week pointing by CGRO, in 1996 January-February. The flare peak represents the highest γ-ray intensity ever recorded for this object. During the high state, extremely rapid γ-ray variability was seen, including an increase of a factor of 2.6 in ∼8 hr, which strengthens the case for relativistic beaming. Coordinated multifrequency observations were carried out with RXTE, ASCA, ROSAT and IUE and from many ground-based observatories, covering most accessible wavelengths. The well-sampled, simultaneous RXTE light curve shows an outburst of lower amplitude (factor of ≃3) well correlated with the γ-ray flare without any lag larger than the temporal resolution of ∼1 day. The optical-UV light curves, which are not well sampled during the high energy flare, exhibit more modest variations (factor of ∼2) and a lower degree of correlation. The flux at millimetric wavelengths was near an historical maximum during the γ-ray flare peak and there is a suggestion of a correlated decay. We present simultaneous spectral energy distributions of 3C 279 prior to and near to the flare peak. The γ-rays vary by more than the square of the observed IR-optical Stanford, CA 94305
The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by the combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit background based on a combination of new techniques, including the concept of a well-type active shield counter. With an effective area of $142 \,\mathrm{cm}^{2}$ at 20 keV and $273 \,\mathrm{cm}^{2}$ at 150 keV, the background level at sea level reached $\sim 1 \times 10^{-5} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 30 keV for the PIN diodes, and $\sim 2 \times 10^{-5} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 100 keV, and $\sim 7 \times 10^{-6} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of $\sim 4 \,\mathrm{cm}$ thick BGO crystals, have a large effective area for sub-MeV to MeV $\gamma$-rays. They work as an excellent $\gamma$-ray burst monitor with limited angular resolution ($\sim 5^{\circ}$). The on-board signal-processing system and the data transmitted to the ground are also described.
Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions between dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (GAP) have recently been shown to generate MG as a by-product. Because plants produce vast amounts of sugars and support the same reaction in the Calvin cycle, we hypothesized that MG also accumulates in chloroplasts. Incubating isolated chloroplasts with excess 3-phosphoglycerate (3-PGA) as the GAP precursor drove the equilibration reaction toward MG production. The rate of oxygen (O2) evolution was used as an index of 3-PGA-mediated photosynthesis. The 3-PGA- and time-dependent accumulation of MG in chloroplasts was confirmed by HPLC. In addition, MG production increased with an increase in light intensity. We also observed a positive linear relationship between the rates of MG production and O2 evolution (R = 0.88; P < 0.0001). These data provide evidence that MG is produced by the Calvin cycle and that sugar-derived RC production is inevitable during photosynthesis. Furthermore, we found that MG production is enhanced under high-CO2 conditions in illuminated wheat leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.