BACKGROUND AND PURPOSE:Currently it is difficult to predict tumor response to anti-angiogenic therapy in individual patients. Our aim was to determine if ADC histogram analysis can stratify progression-free and overall survival in patients with newly diagnosed GBM treated "up-front" (ie, before tumor recurrence) with bevacizumab.
Purpose:To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules.Methods:This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature.Results:The water phantom results demonstrated substantial variability among feature values calculated across conditions, with the exception of histogram mean. Features calculated from lung nodules demonstrated similar results with histogram mean as the most robust feature (Q ≤ 1), having a mean and standard deviation Q of 0.37 and 0.22, respectively. Surprisingly, histogram standard deviation and variance features were also quite robust. Some GLCM features were also quite robust across conditions, namely, diff. variance, sum variance, sum average, variance, and mean. Except for histogram mean, all features have a Q of larger than one in at least one of the 3% dose level conditions.Conclusions:As expected, the histogram mean is the most robust feature in their study. The effects of acquisition and reconstruction conditions on GLCM features vary widely, though trending toward features involving summation of product between intensities and probabilities being more robust, barring a few exceptions. Overall, care should be taken into account for variation in density and textu...
Ge thin films are grown on Si͑001͒ substrates by molecular-beam epitaxy at 370°C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450°C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450°C. Double-axis x-ray /2 scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents.
Three-stage nucleation and growth of Ge self-assembled quantum dots ͑SAQDs͒ on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60°d islocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.