Paulownia is a fast-growing woody tree, native to the forests of China. It belongs to the family Scrophulariaceae and is mainly used as a source of wood for furniture and musical instruments. Due to its fast-growing nature and high-quality of wood, there has been growing interest in cultivation and research of Paulownia in Nepal. Growth comparison was performed by measuring shoot length in in vitro condition. Among two species of Paulownia - Paulownia tomentosa (Thunb.) Steud and Paulownia fortuneii (Seem.) Hemsl., the growth rate of P. tomentosa was found to be 0.355 cm/week while that of P. fortuneii was found to be 0.637 cm/week in in-vitro conditions in MS medium supplemented with 0.1 mg/l NAA and 1mg/l BAP. Optimization of rooting methods was also performed, in which, sand rooting was found to be easier and more effective than in-vitro rooting. Dipping the plantlets in 1 mg/l of NAA was found to produce longer and denser roots than lower or higher concentrations during sand rooting.
BackgroundTLR8 assists in antiviral approach by producing Type 1 INF via MyD88 dependent IRF7 pathway. However, over expression of INFα/β molecule poses threat by developing tolerance in chronic infection cases and enhancing inflammatory response. Here we report a bi-specific siRNA based complex which differentially activates and silences the TLR8 and MYD88 respectively in a negatively regulated fashion.ResultsOuter membrane vesicle from Escherichia coli used for siRNA delivery was observed more efficient when attached with invasive protein Ail along with OmpA (P < 0.001) in HEK293-TLR8 cell line. siRNA complexed with p19 protein was efficient in activating TLR8, confirmed by the increment of INFβ molecules (P < 0.001) in HEK293-TLR8 compared to its counterpart. Fusion of lipid bilayer of endosomal compartment was significant at pH 4.5 when fusogenic peptides (diINF-7) were incubated in membrane vesicle, thus facilitating the escape of siRNA complex to the host cytoplasm in order to silence MyD88 transcript (P < 0.001).ConclusionsWe investigated the activation of TLR8 by bi-specific si-RNA for the production of INFβ. In the same setting we showed that bi-specific si-RNA was able to silence MyD88 transcript in a delayed manner. For the cases of auto immune disease and inflammation where over activation of endosomal TLRs poses serious threat, bi specific siRNA could be used as negative feedback controlled system.Electronic supplementary materialThe online version of this article (doi:10.1186/s12865-015-0109-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.