Background: Current air quality standards for particulate matter (PM) use the PM mass concentration [PM with aerodynamic diameters ≤ 10 μm (PM10) or ≤ 2.5 μm (PM2.5)] as a metric. It has been suggested that particles from combustion sources are more relevant to human health than are particles from other sources, but the impact of policies directed at reducing PM from combustion processes is usually relatively small when effects are estimated for a reduction in the total mass concentration.Objectives: We evaluated the value of black carbon particles (BCP) as an additional indicator in air quality management.Methods: We performed a systematic review and meta-analysis of health effects of BCP compared with PM mass based on data from time-series studies and cohort studies that measured both exposures. We compared the potential health benefits of a hypothetical traffic abatement measure, using near-roadway concentration increments of BCP and PM2.5 based on data from prior studies.Results: Estimated health effects of a 1-μg/m3 increase in exposure were greater for BCP than for PM10 or PM2.5, but estimated effects of an interquartile range increase were similar. Two-pollutant models in time-series studies suggested that the effect of BCP was more robust than the effect of PM mass. The estimated increase in life expectancy associated with a hypothetical traffic abatement measure was four to nine times higher when expressed in BCP compared with an equivalent change in PM2.5 mass.Conclusion: BCP is a valuable additional air quality indicator to evaluate the health risks of air quality dominated by primary combustion particles.
1. Scope -is the work directly or implicitly related to atmospheric composition? 2. Novelty -does the work provide a) a general and/or broader relevance (e.g. not a pure local study), b) new results or methods, and c) does it add significantly to the knowledge of atmospheric composition and its impacts?3. Quality -does the work contain high quality a) atmospheric observations, b) process studies, c) modeling exercises or d) data analysis?Will your paper be within the scope of Atmospheric Environment?We try to be flexible with novel scientific articles on issues of atmospheric composition even, if they are not directly related to atmospheric measurements (e.g. wind tunnel studies, dynamometer studies, remote sensing retrieval, etc). However, we are still cautious of purely mathematical derivations, preliminary results or insignificant case and local studies. The authors should make sure that the articles contain substantial contributions to the science of atmospheric composition before sending them for review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.