We report measurements of hydroxyl (OH) and hydroperoxy (HO2) radicals made by laserinduced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available 'air cleaning' device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5
Abstract. The RONOCO (ROle of Nighttime chemistry in controlling the Oxidising Capacity of the AtmOsphere) aircraft campaign during July 2010 and January 2011 made observations of OH, HO 2 , NO 3 , N 2 O 5 and a number of supporting measurements at night over the UK, and reflects the first simultaneous airborne measurements of these species. We compare the observed concentrations of these short-lived species with those calculated by a box model constrained by the concentrations of the longer lived species using a detailed chemical scheme. OH concentrations were below the limit of detection, consistent with model predictions. The model systematically underpredicts HO 2 by ∼ 200 % and overpredicts NO 3 and N 2 O 5 by around 80 and 50 %, respectively. Cycling between NO 3 and N 2 O 5 is fast and thus we define the NO 3x (NO 3x = NO 3 + N 2 O 5 ) family. Production of NO 3x is overwhelmingly dominated by the reaction of NO 2 with O 3 , whereas its loss is dominated by aerosol uptake of N 2 O 5 , with NO 3 + VOCs (volatile organic compounds) and NO 3 + RO 2 playing smaller roles. The production of HO x and RO x radicals is mainly due to the reaction of NO 3 with VOCs. The loss of these radicals occurs through a combination of HO 2 + RO 2 reactions, heterogeneous processes and production of HNO 3 from OH + NO 2 , with radical propagation primarily achieved through reactions of NO 3 with peroxy radicals. Thus NO 3 at night plays a similar role to both OH and NO during the day in that it both initiates RO x radical production and acts to propagate the tropospheric oxidation chain. Model sensitivity to the N 2 O 5 aerosol uptake coefficient (γ N 2 O 5 ) is discussed and we find that a value of γ N 2 O 5 = 0.05 improves model simulations for NO 3 and N 2 O 5 , but that these improvements are at the expense of model success for HO 2 . Improvements to model simulations for HO 2 , NO 3 and N 2 O 5 can be realised simultaneously on inclusion of additional unsaturated volatile organic compounds, however the nature of these compounds is extremely uncertain.
The RONOCO aircraft campaign during July 2010 and January 2011 made observations of OH, HO2, NO3, N2O5 and a number of supporting measurements at night over the UK, and reflects the first simultaneous airborne measurement of these species. We compare the observed concentrations of these short-lived species with those calculated by a box model, constrained by the concentrations of the longer lived species, using a detailed chemical scheme. OH concentrations were below the limit of detection, consistent with the model predictions. The model systematically underpredicts HO2 by a factor of ~2 and overpredicts NO3 and N2O5 by factors of around 75% and 50%, respectively. Cycling between NO3 and N2O5 is fast and thus we define the NO3x (NO3x = NO3 + N2O5) family. Production of NO3x is overwhelmingly dominated by the reaction of NO2 with O3, whereas its loss is dominated by aerosol uptake of N2O5, with NO3 + VOCs and NO3 + RO2 playing smaller roles. The production of HOx and ROx radicals is mainly due to the reaction of NO3 with VOCs. The loss of these radicals occurs through a combination of HO2 + RO2 reactions, heterogeneous processes and production of HNO3 from OH + NO2, with radical propagation primarily achieved through reactions of NO3 with peroxy radicals. Thus NO3 at night plays a similar role to both OH and NO during the day in that it both initiates ROx radical production and acts to propagate the oxidation chain. Model sensitivity to the N2O5 aerosol uptake coefficient (γN2O5) is discussed, and we find that a value of γN2O5 = 0.05 improves model simulations for NO3 and N2O5, but that these improvements are at the expense of model success for HO2. Improvements to model simulations for HO2, NO3 and N2O5 can be realised simultaneously on inclusion of additional unsaturated volatile organic compounds, however the nature of these compounds is extremely uncertain
Abstract. In situ field measurements of glyoxal at the surface in the tropical marine boundary layer have been made with a temporal resolution of a few minutes during two 4-week campaigns in June–July and August–September 2014 at the Cape Verde Atmospheric Observatory (CVAO; 16∘52′ N, 24∘52′ W). Using laser-induced phosphorescence spectroscopy with an instrumental detection limit of ∼1 pptv (1 h averaging), volume mixing ratios up to ∼10 pptv were observed, with 24 h averaged mixing ratios of 4.9 and 6.3 pptv observed during the first and second campaigns, respectively. Some diel behaviour was observed, but this was not marked. A box model using the detailed Master Chemical Mechanism (version 3.2) and constrained with detailed observations of a suite of species co-measured at the observatory was used to calculate glyoxal mixing ratios. There is a general model underestimation of the glyoxal observations during both campaigns, with mean midday (11:00–13:00) observed-to-modelled ratios for glyoxal of 3.2 and 4.2 for the two campaigns, respectively, and higher ratios at night. A rate of production analysis shows the dominant sources of glyoxal in this environment to be the reactions of OH with glycolaldehyde and acetylene, with a significant contribution from the reaction of OH with the peroxide HC(O)CH2OOH, which itself derives from OH oxidation of acetaldehyde. Increased mixing ratios of acetaldehyde, which is unconstrained and potentially underestimated in the base model, can significantly improve the agreement between the observed and modelled glyoxal during the day. Mean midday observed-to-modelled glyoxal ratios decreased to 1.3 and 1.8 for campaigns 1 and 2, respectively, on constraint to a fixed acetaldehyde mixing ratio of 200 pptv, which is consistent with recent airborne measurements near CVAO. However, a significant model under-prediction remains at night. The model showed limited sensitivity to changes in deposition rates of model intermediates and the uptake of glyoxal onto aerosol compared with sensitivity to uncertainties in chemical precursors. The midday (11:00–13:00) mean modelled glyoxal mixing ratio decreased by factors of 0.87 and 0.90 on doubling the deposition rates of model intermediates and aerosol uptake of glyoxal, respectively, and increased by factors of 1.10 and 1.06 on halving the deposition rates of model intermediates and aerosol uptake of glyoxal, respectively. Although measured levels of monoterpenes at the site (total of ∼1 pptv) do not significantly influence the model calculated levels of glyoxal, transport of air from a source region with high monoterpene emissions to the site has the potential to give elevated mixing ratios of glyoxal from monoterpene oxidation products, but the values are highly sensitive to the deposition rates of these oxidised intermediates. A source of glyoxal derived from production in the ocean surface organic microlayer cannot be ruled out on the basis of this work and may be significant at night.
Abstract. Measurements of the radical species OH and HO 2 were made using the fluorescence assay by gas expansion (FAGE) technique during a series of nighttime and daytime flights over the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1σ limit of detection during any of the nighttime flights or during the winter daytime flights, placing upper limits on [OH] of 1.8 × 10 6 molecule cm −3 and 6.4 × 10 5 molecule cm −3 for the summer and winter flights, respectively. HO 2 reached a maximum concentration of 3.2 × 10 8 molecule cm −3 (13.6 pptv) during a night-time flight on 20 July 2010, when the highest concentrations of NO 3 and O 3 were also recorded. An analysis of the rates of reaction of OH, O 3 , and the NO 3 radical with measured alkenes indicates that the summer night-time troposphere can be as important for the processing of volatile organic compounds (VOCs) as the winter daytime troposphere. An analysis of the instantaneous rate of production of HO 2 from the reactions of O 3 and NO 3 with alkenes has shown that, on average, reactions of NO 3 dominated the night-time production of HO 2 during summer and reactions of O 3 dominated the night-time HO 2 production during winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.