The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III–nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.
We report AlGaN deep ultraviolet light-emitting diodes (LEDs) at 250 and 255nm that have short emission wavelengths. For an unpackaged 200×200μm square geometry LED emitting at 255nm, we measured a peak power of 0.57mW at 1000mA of pulsed pump current. For a similar device emitting at 250nm the peak output power of 0.16mW was measured at 300mA of pulsed pump current. Progress is based on the development of high quality AlGaN cladding layers with an Al content up to 72%, which were grown over AlGaN∕AlN superlattice buffer layers on sapphire substrates. These n-Al0.72Ga0.28N layers were doped with Si up to about 1×1018cm−3 and electron mobilities up to 50cm2∕V∙s were estimated. High resolution x-ray diffraction studies gave a narrow (002) rocking curve with full width at half maximum of only 133arcsec.
Polarization effects have been studied in GaN/AlGaN multiple quantum wells (MQWs) with different c-axis orientation by means of excitation-dependent photoluminescence (PL) analysis. Quantum structures were grown on [0001]-oriented sapphire substrates (C plane) and single-crystalline [11̄00]-oriented freestanding GaN (M plane) using the metalorganic chemical vapor deposition technique. Strong PL spectrum line blueshifts (up to 140 meV) which are correlated with the excitation intensity have been obtained for C-plane MQWs, whereas no shift has been observed for M-plane MQWs. Theoretical calculations and comparison with the PL data confirm that the built-in electric field for C-plane structures is much stronger than the field present for M-plane MQWs. In the former case, the excitation-induced blueshift of the PL line is due to the screening of the built-in electric field by photoinjected carriers, which is consistent with the field strength of 1.23 MV/cm in the absence of excitation.
We report homoepitaxial GaN growth on freestanding (11̄00) oriented (M-plane GaN) substrates using low-pressure metalorganic chemical vapor deposition. Scanning electron microscopy, atomic-force microscopy, and photoluminescence were used to study the influence of growth conditions such as the V/III molar ratio and temperature on the surface morphology and optical properties of the epilayers. Optimized growth conditions led to high quality (11̄00) oriented GaN epilayers with a smooth surface morphology and strong band-edge emission. These layers also exhibited strong room temperature stimulated emission under high intensity pulsed optical pumping. Since for III-N materials the (11̄00) crystal orientation is free from piezoelectric or spontaneous polarization electric fields, our work forms the basis for developing high performance III-N optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.