The hole concentrations and lattice mismatch with the GaAs substrate of heavily carbon-doped epilayers (4.7×1019 and 9.8×1019 cm−3) were increased and the mobilities were decreased as compared with the as-grown samples by rapid thermal annealing silicon nitride capped samples at temperatures from 500 to 900 °C. However, for the more heavily doped sample, the hole concentration, mobility, and lattice mismatch decreased with increasing annealing temperature for annealing temperatures higher than 700 °C, but the hole concentration and lattice mismatch were still larger than those of the as-grown samples. Secondary ion mass spectroscopy results showed that annealing produced no change in the C concentration or distribution, but the hydrogen concentration decreased. Cross-sectional transmission electron microscopy indicated that no mismatch dislocations formed at the interface.
The formation of low temperature Au-Ge contacts to n-GaAs is a two-step process. In the first step, the metals segregate into Au and Ge rich regions and the intermixing of the Au and Ge with the Ga and As causes a reduction in the barrier height. The second step occurs after extended annealing, during which time Au and Ge continue to diffuse into the substrate. An orthorhombic Au-Ga phase is formed and it is likely that other Au-Ga or Ge-As phases are formed. The length of the extended anneal is dependent upon the atomic percent of Ge in the film, with the 10 at. % Ge taking 6 hr., the 27 at. % Ge taking 3 hr. and the 50 at. % Ge taking 9 hr. to become ohmic. The 75 at. % Ge sample doesn’t show ohmic behavior even after 33 hr. of annealing. The metal-semiconductor interface configuration appears abrupt, showing no protrusions into the GaAs substrate.
A thermally stable Pd/Ge/Ti/Pt/ ohmic contact with low specific contact resistance was formed on both n and p+-GaAs. The lowest specific contact resistances were 4.7×10−7 and 6.4×10−7 Ω.cm2 for the n and p+-GaAs, respectively, when the n-GaAs was doped with Si to 2×1018cm−3, and the p+-GaAs was doped with carbon to 5×1019 cm−3. Interfacial reactions and element diffusions of the contacts were investigated by using transmission electron microscopy, Auger electron spectrometry with depth profiles. All the contacts were thermally stable at 300 °C for 20 hours, and it appeared that the p-contacts were more stable than the n-contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.