By use of a tensile stress wave 0.1 to 0.4 μsec in duration, generated by pulsed electron−beam energy deposition, the dynamic tensile strength (TS) of glycerol was determined in the 220−350 K temperature range. The TS curve is clearly divided into high− and low−temperature segments at about 262 K. Above this temperature, the TS decreases uniformly from 250 MPa (2.5 kbar) to 34 MPa at 350 K and failure appears to occur by void nucleation and growth. The experimental results are explained by a theory of homogeneous bubble nucleation which takes into account the non−steady−state nature of the experiment. Below the transition temperature, the TS is constant at about 250 MPa and failure is believed to occur by crack nucleation and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.