Background Pediatric drug development is hampered by practical, ethical, and scientific challenges. Microdosing is a promising new method to obtain pharmacokinetic data in children with minimal burden and minimal risk. The use of a labeled oral microdose offers the added benefit to study intestinal and hepatic drug disposition in children already receiving an intravenous therapeutic drug dose for clinical reasons. Objective The objective of this study was to present pilot data of an oral [14 C]paracetamol [acetaminophen (AAP)] microdosing study as proof of concept to study developmental pharmacokinetics in children.Methods In an open-label microdose pharmacokinetic pilot study, infants (0-6 years of age) received a single oral Conclusions We demonstrate the feasibility of using a [ 14 C]labeled microdose to study AAP pharmacokinetics, including metabolite disposition, in young children.Electronic supplementary material The online version of this article
The increasing role of accelerator mass spectrometry (AMS) in biomedical research necessitates modernization of the traditional sample handling process. AMS was originally developed and used for carbon dating, therefore focusing on a very high precision but with a comparably low sample throughput. Here, we describe the combination of automated sample combustion with an elemental analyzer (EA) online coupled to an AMS via a dedicated interface. This setup allows direct radiocarbon measurements for over 70 samples daily by AMS. No sample processing is required apart from the pipetting of the sample into a tin foil cup, which is placed in the carousel of the EA. In our system, up to 200 AMS analyses are performed automatically without the need for manual interventions. We present results on the direct total (14)C count measurements in <2 μL human plasma samples. The method shows linearity over a range of 0.65-821 mBq/mL, with a lower limit of quantification of 0.65 mBq/mL (corresponding to 0.67 amol for acetaminophen). At these extremely low levels of activity, it becomes important to quantify plasma specific carbon percentages. This carbon percentage is automatically generated upon combustion of a sample on the EA. Apparent advantages of the present approach include complete omission of sample preparation (reduced hands-on time) and fully automated sample analysis. These improvements clearly stimulate the standard incorporation of microtracer research in the drug development process. In combination with the particularly low sample volumes required and extreme sensitivity, AMS strongly improves its position as a bioanalysis method.
Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs.
To study the release of neurotransmitters, i.e., the recruitment of transmitters for release and the regulation of the release process, isolated nerve terminals (synaptosomes) of the rat forebrain were immobilized in Sephadex gel inside a perfusion chamber. In this way, the following were achieved: (a) A very limited pressure stress was exerted on the synaptosomes, so that these remained viable for long periods (greater than 30 min) inside the chamber and did not elute from the chamber, which allowed long-term experiments with repeated stimulations; (b) estimation of the release of various endogenous transmitters, both in a Ca(2+)-dependent (exocytotic) and Ca(2+)-independent manner; (c) a step-like stimulation with depolarizing agents (rise time, 3-4 s) and a high time resolution (600-ms sampling); and (d) negligible reuptake of transmitter into the terminals or extracellular breakdown. It is concluded that this perfusion setup helps to provide new insights in the presynaptic stimulus-secretion coupling, co-transmission, and the exo-endocytosis cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.