The physics of the crossover between weak-coupling Bardeen–Cooper–Schrieffer (BCS) and strong-coupling Bose–Einstein condensate (BEC) limits gives a unified framework of quantum-bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature Tc=8.5 K has been found to be deep inside the BCS–BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below T*∼20 K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance and transport data give evidence of pseudogap formation at ∼T*. The multiband superconductivity along with electron–hole compensation in FeSe may highlight a novel aspect of the BCS–BEC crossover physics.
The dispersion of the Cu-O bond-stretching and bond-bending vibrations in YBa(2)Cu(3)O(6.6) has been studied by high resolution inelastic neutron scattering. While the behavior of the bond-bending vibrations can be well accounted for by a simple potential model, the bond-stretching vibrations show a highly anomalous behavior. The displacement pattern of the most anomalous phonons is in principle consistent with dynamic charge stripe formation. However, charge stripes would have to extend along the a axis and not the b axis as inferred from the magnetic fluctuations by Mook et al. [Nature (London) 404, 729 (2000)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.