The paper describes the effect of the isotopic mass on plasma parameters as observed in the ASDEX tokamak. The paper comprises Ohmic as well as L mode, H mode and H* mode scenarios. The measurements reveal that the ion mass is a substantial and robust parameter, which affects all the confinement times (energy, particle and momentum) in the whole operational window. Both core properties such as the sawtooth repetition time and edge properties such as the separatrix density change with the isotopic mass. Specific emphasis is given to the edge parameters and changes of the edge plasma due to different types of wall conditioning, such as carbonization and boronization. The pronounced isotope dependences of the edge and divertor parameters are explained by the secondary effect of different power fluxes into the scrape-off layer plasma and onto the divertor plates. Finally, the observations serve to test different transport theories. With respect to the ion temperature gradient driven turbulence, the isotope effect is also studied in pellet refuelled discharges with peaked density profiles. The results from ASDEX are compared with the results from other experiments
In Escherichia coli transcription of the tRNA operon thrU (tuJB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tuJB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tuiB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed.Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tuJB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that of wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is independent of nutritional factors. The well-known growth rate-dependent control, displayed by exponentially growing cells studied under various nutritional conditions, is governed by two regulatory mechanisms: repression, presumably by ribosome feedback inhibition, and stimulation by trans activation. FIS allows very fast bacterial growth.The synthesis of rRNA of Escherichia coli is finely tuned to the cell's environmental conditions. Cells growing in a constant environment do not show a significant turnover or a significant buildup of free rRNA or vacant ribosomes, except at very low growth rates (for reviews, see references 20, 21, and 26). Consequently, ribosomes are utilized at maximal or near-maximal capacity. Upon alteration of the nutritional capacity of the medium, leading to a different but constant environment, cells promptly readjust the synthesis of their rRNA and tRNA to meet the demands of an altered growth rate. In exponentially growing cells the concentration of ribosomes (and of rRNA) thus appears to be proportional to growth rate (6,8...
A review of particle-solid processes pertinent to modelling plasma-wall interactions is presented, and sets of recommended data are given. Analytic formulas are used where possible; otherwise, data are presented in the form of tables and graphs. The incident particles considered are e−, H, D, T, He, C, O, and selfions. The materials include the metals aluminum, beryllium, copper, molybdenum, stainless steel, titanium, and tungsten and the nonmetals carbon and TiC. The processes covered are light ion reflection, hydrogen and helium trapping and detrapping, desorption, evaporation, sputtering, chemical effects in sputtering, blistering caused by implantation of helium and hydrogen, secondary electron emission by electrons and particles, and arcing.
This article synthesises a series of studies concerned with physical, chemical and biological processes involved in sediment dynamics (sedimentation, erosion and mixing) of the Molenplaat tidal flat in the Westerschelde (SW Netherlands). Total sediment accretion rate on the flat (sand to muddy sand) was estimated to be ~2 cm yr -1 , based on 210 Pb and 137 Cs profiles. 7 Be showed maximum activity in the surface sediments during summer, reflecting accretion of fine silt at this time of year, and total vertical mixing of sediment to be in the order of 50 cm 2 yr -1 . The extent to which different physical and biological processes (tidal currents, air exposure, bio-stabilisation, biodeposition and bioturbation) contributed towards sediment dynamics was estimated. A sediment transport model based on physical factors estimated sedimentation rates of 1.2 cm yr -1 , but did not account for tidal or seasonal variation in suspended particulate matter (SPM), wind or effects of spring-neap tidal cycles. When the model was run with an increased critical bed shear stress due to the microphytobenthos, net sedimentation rates increased 2-fold. These higher rates were in closer agreement with the rates derived from the depth profiles of radionuclides for the central region of the tidal flat (2.0 to 2.4 cm yr -1 ). Therefore a significant part of the sedimentation rate (~50%) may be explained by spatial-temporal changes in biological processes, including 'bio-stabilisation' by microphytobenthos, together with the enhanced biodeposition of silt by suspension feeders, and offset by processes of 'bio-destabilisation' by grazers and bioturbators. In the centre of the tidal flat there was a shift from high sediment stability in spring-summer 1996 to low sediment stability in autumn 1997, quantified by a significant reduction in critical erosion velocity of 0.12 to 0.15 m s -1 , and accompanied by a 30-to 50-fold increase in sediment erosion rate. The change was associated with a shift from a tidal flat dominated by benthic diatoms and a low biomass of bioturbating clams (Macoma balthica), to a more erodable sediment with a lower microphytobenthos density and a higher biomass of M. balthica. Vertical mixing of sediment and organic matter, studied using a variety of tracers, was rapid and enhanced by advective water flow at sandy sites and by burrowing polychaetes and bivalves at silty sites. The sediment dynamics and biogeochemistry of tidal flats is dependent on the complex interactions between physical, chemical and biological processes/properties, which include tidal currents, river flows, storm waves, air exposure, dehydration in summer, ice-scour in winter, sediment properties (grain size and composition, organic content, nutrient content, redox balance), stabilisation by biota (algal biofilms, mussel beds, salt marsh) and destabilisation by biota (bioturbating bivalves, scouring around clumps of animals and plants). To date, there have been very few multi-disciplinary studies providing an integrated view of the sedim...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.