As-doped ZnO (ZnO:As) films have been characterized. ZnO:As films show p-type characteristics determined by Hall-effect and photoluminescence (PL) measurements. The hole concentration can be increased up to the mid-1017-cm−3 range. The thermal binding energy of the As acceptor (EAth-b) is 120±10 meV, as derived from temperature-dependent Hall-effect measurements. The PL spectra reveal two different acceptor levels (EAopt-b), located at 115 and 164 meV, respectively, above the maximum of the ZnO valence band, and also show the binding energy of the exciton to the As-acceptor (EAXb) is about 12 meV. The values of the ratio EAXb/(EAth-b or EAopt-b) are located in the range from 0.07 to 0.11.
Results are presented for ZnO-based ultraviolet light emitting diodes (LEDs) that employ a BeZnO∕ZnO active layer comprised of seven quantum wells. Arsenic and gallium are used for p-type and n-type layers. The ZnO-based LEDs show two dominant electroluminescence peaks located in the ultraviolet spectral region between 360 and 390nm, as well as a broad peak at 550nm.
A wide-band gap oxide alloy, BeZnO, is proposed and studied in this letter. The BeZnO films were deposited on sapphire substrates by our hybrid beam deposition growth method. The value of the energy band gap of BeZnO can be efficiently engineered to vary from the ZnO band gap ͑3.4 eV͒ to that of BeO ͑10.6 eV͒. BeZnO can be used for fabricating films and heterostructures of ZnO-based electronic and photonic devices and for other applications. Changes in the measured energy band gap and lattice constant values with Be content are described for BeZnO alloys.
Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities Appl. Phys. Lett. 101, 161115 (2012) Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser Appl. Phys. Lett. 101, 161117 (2012) Relative intensity noise of a quantum well transistor laser Appl. Phys. Lett. 101, 151118 (2012) Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate Appl. Phys. Lett. 101, 151113 (2012) Ground state terahertz quantum cascade lasers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.