Despite abundant data supporting c-Src as a metastasis-promoting oncogene, activating mutations of c-Src are rare. This suggests that trans-interacting proteins may have a critical role in regulating c-Src activation. Here, we first report the discovery of Src homology 3 (SH3) domain-binding glutamic acid-rich-like protein (SH3BGRL), a novel c-Src activator in mice. Ectopic expression of murine SH3BGRL (mSH3BGRL) strongly promoted both tumor cell invasion and lung metastasis. Molecularly, mSH3BGRL specifically bound the inactive form of c-Src phosphorylated at Tyr527, promoting Tyr416 phosphorylation of c-Src and subsequent FAK-mediated activation of ERK and AKT signaling pathways. Targeting endogenous c-Src alone was sufficient to abolish mSH3BGRL-induced cancer metastasis in vivo. Unexpectedly, human SH3BGRL (hSH3BGRL) in turn suppressed tumorigenesis and metastasis in nature. We attempted site-specific reversion of hSH3BGRL amino-acid sequence to mSH3BGRL and found V108A substitution sufficient to restore SH3BGRL function as a c-Src activator and metastasis promoter. Notably, the somatic mutation R76C of hSH3BGRL can similarly act as hSH3BGRL-V108A and mSH3BGRL in tumorigenesis and metastasis. Our results uncover an evolutionarily controversial role of SH3BGRL in driving tumor metastasis through c-Src activation, and suggests that hSH3BGRL mutation status could be relevant to cancer diagnosis and therapy.
Dengue is a rapidly spreading mosquito-borne disease caused by the dengue virus (DENV) and has emerged as a severe public health problem around the world. Guangdong, one of the southern Chinese provinces, experienced a serious outbreak of dengue in 2014, which was believed to be the worst dengue epidemic in China over the last 20 years. To better understand the epidemic, we collected the epidemiological data of the outbreak and analyzed 14,594 clinically suspected dengue patients from 25 hospitals in Guangdong. Dengue cases were then laboratory-confirmed by the detection of DENV non-structural protein 1 (NS1) antigen and/or DENV RNA. Afterwards, clinical manifestations of dengue patients were analyzed and 93 laboratory-positive serum specimens were chosen for the DENV serotyping and molecular analysis. Our data showed that the 2014 dengue outbreak in Guangdong had spread to 20 cities and more than 45 thousand people suffered from dengue fever. Of 14,594 participants, 11,387 were definitively diagnosed. Most manifested with a typical non-severe clinical course, and 1.96 % developed to severe dengue. The strains isolated successfully from the serum samples were identified as DENV-1. Genetic analyses revealed that the strains were classified into genotypes I and V of DENV-1, and the dengue epidemic of Guangdong in 2014 was caused by indigenous cases and imported cases from the neighboring Southeast Asian countries of Malaysia and Singapore. Overall, our study is informative and significant to the 2014 dengue outbreak in Guangdong and will provide crucial implications for dengue prevention and control in China and elsewhere.
Triple-negative breast cancer (TNBC) is very aggressive and currently has no specific therapeutic targets; as a consequence, TNBC exhibits poor clinical outcome. In this study, we showed that cancerous inhibitor of protein phosphatase 2A (Cip2a) represents a promising target in TNBC because Cip2a was highly expressed in TNBC cells and tumor tissues, and its expression showed an inverse correlation with overall survival in patients with TNBC. We found that inhibition of Cip2a in TNBC cells induced cell cycle arrest at the G2/M phase, inhibited cell proliferation and delayed tumor growth in the xenograft model. Moreover, Cip2a markedly decreased the expression and nuclear localization of p27Kip1 and this is critical for the ability of Cip2a to promote TNBC progression. Mechanistically, our studies showed that Cip2a promoted p27Kip1 phosphoration at Ser10 via inhibiting Akt-associated PP2A activity, which seems to relocalize p27Kip1 to the cytoplasm in TNBC cells. On the other hand, Cip2a also recruited c-myc to mediate the transcriptional inhibition of p27Kip1. Notably, we observed negative correlation between Cip2a and p27Kip1 expression in TNBC specimens. In addition, our data showed that Cip2a depletion could sensitize TNBC to PARP inhibition. Collectively, these data suggested that Cip2a effectively promotes TNBC cell cycle progression and tumor growth via regulation of PP2A/c-myc/p27Kip1 signaling, which could serve as a potential therapeutic target for TNBC patients.
The purpose of this study was to assess whether cytochrome P450 enzyme 2A6 (CYP2A6) genotypes moderate the association between smoking and hypertension. In this study, 954 Chinese male current smokers from a community-based chronic disease screening project in Guangzhou were interviewed with a structured questionnaire about socio-demographic status, smoking and other health-related behaviors. Blood was collected for DNA extraction and CYP2A6 genotyping. Hypertension was defined according to 2007 ESH-ESC Practice Guidelines. A multivariate logistic regression was performed to examine the interaction between smoking quantity and CYP2A6 genotypes on hypertension after adjusting for age, education level and other potential confounders. Multivariate analyses indicated that smoking more than 15 cigarettes per day significantly increased the risk of hypertension (odds ratio (OR)=1.59, 95% confidence interval (CI)=1.21-2.10) compared with smoking 1-15 cigarettes per day, and further suggested that smoking interacted with normal CYP2A6 metabolizer genotype to increase the risk of hypertension. Smokers consuming more than 15 cigarettes per day with normal CYP2A6 metabolizer genotypes had the highest risk of hypertension (OR=2.04, 95% CI=1.11-3.75) compared with those consuming 1-15 cigarettes per day with slower CYP2A6 metabolizer genotypes. These findings demonstrated that smoking quantity was positively associated with hypertension and that CYP2A6 genotypes may moderate this relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.