We report the optical characterization of high-quality 1.55μm GaxIn1−xNyAs1−y multiquantum wells (MQWs), grown on GaAs with Ga(In)N0.01As spacer layers. The transitions between the quantized QW states of the electrons and holes have been identified using photoluminescence excitation spectroscopy. Their energies are consistent with theoretical fitting based on the band anticrossing model. It is also confirmed by detailed spectroscopic measurements that the addition of even a small amount of In to GaN0.01As barriers remarkably improves the optical characteristics of the QWs. The results imply that although strain-compensated GaInNAs MQWs provide a feasible approach to realizing 1.55μm optical emission, the relative lattice mismatch between the wells and barriers is critical to the optical quality of the related QWs.
Composition modulation observed in GaInNAs quantum wells imposes an important handicap to their potential application within optical components, particularly as the indium and nitrogen contents are increased to reach longer wavelengths. In this paper, we compare our experimental results of phase separation in GaInNAs quantum wells grown at different temperatures with recent theoretical models of spinodal decomposition from the literature. This comparison has shown that the regular solution approximation, which explains the higher composition modulation compared to GaInAs samples, provides a more appropriate explanation of GaInNAs decomposition than the usual delta lattice-parameter approximation. Transmission electron microscopy shows no composition modulation contrasts with the chemical sensitive 002 dark field reflection and a strong increase in the intensity of the strain contrasts observed with 220 bright field reflection as the growth temperature increases from 360to460°C. These observations can be explained by an uncoupling between N and In composition profiles forming separate In-rich and N-rich regions according to the regular solution approximation model. We therefore believe that the compositional fluctuations in GaInNAs are not only due to GaInAs decomposition, but that an uncoupled modulation of the III and V elements is also present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.