There are various limitations on the supporting tools and design methodologies for the implementation of an asynchronous delay-insensitive model. In this paper, we propose a new design flow by exploiting a mixed model, which combines a bounded delay model and a delay-insensitive model. To develop the design flow, we use an asynchronous finite-state machine for the bounded delay model and the null convention logic for the delay-insensitive model. Further, we designed an MSP430 core to verify the proposed design flow and the results of simulation show that it exhibits a performance improvement of 30.34% over its synchronous counterpart.
To address the wire complexity problem in largescale globally asynchronous, locally synchronous systems, a current-mode ternary encoding scheme was devised for a two-phase asynchronous protocol. However, for data transmission through a very long wire, few studies have been conducted on reducing the long propagation delay in current-mode circuits. Hence, this paper proposes a current steering logic (CSL) that is able to minimize the long delay for the devised current-mode ternary encoding scheme. The CSL creates pulse signals that charge or discharge the output signal in advance for a short period of time, and as a result, helps prevent a slack in the current signals. The encoder and decoder circuits employing the CSL are implemented using 0.25-lm CMOS technology. The results of an HSPICE simulation show that the normal and optimal mode operations of the CSL achieve a delay reduction of 11.8% and 28.1%, respectively, when compared to the original scheme for a 10-mm wire. They also reduce the power-delay product by 9.6% and 22.5%, respectively, at a data rate of 100 Mb/s for the same wire length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.