Abstract-In partially reconfigurable architectures, system components can be dynamically loaded and unloaded allowing resources to be shared over time. This paper focuses on the relation between the design options of partial reconfiguration modules and their placement at run-time. For a set of dynamic system components, we propose a design method that optimizes the feasible positions of the resulting partial reconfiguration modules to minimize position overlaps. We introduce the concept of subregions, which guarantees the parallel execution of a certain number of partial reconfiguration modules for tiled reconfigurable systems. Experimental results, which are based on a Xilinx Virtex-4 implementation, show that at run-time the average number of available positions can be increased up to 6.4 times and the number of placement violations can be reduced up to 60.6%.
Modern FPGAs, such as the Xilinx Virtex-II Series, offer the feature of partial and dynamic reconfiguration, allowing to load various hardware configurations (i.e., HW modules) during run-time. To enable communication with these modules and for controlling purposes, dedicated access to each module as well as dedicated signals to control the global communication are required. This paper discusses several ways of implementing dedicated signals and addresses the impact on dynamically reconfigurable systems. Two new approaches are introduced, which allow a permanent access to the modules and to the communication infrastructure even during reconfiguration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.