Background
Mesenchymal stem cells (MSC)-based tissue engineered breast represent the visible future for breast reconstruction after mastectomy. However, autologous MSCs might not be appropriate for the large graft construction due to cell senescence during excessive cell expansion, thus hindering its further off-the-shelf application. The human umbilical cord mesenchymal stem cells (hUCMSCs) have been found to induce low immune response and can be easily stored, making them ideal for off-the-shelf tissue engineering application. Here, we explored the feasibility of using umbilical cord mesenchymal stem cells as tissue-engineered breast seed cells.
Methods
The allogenic hUCMSCs were injected into transplanted fat tissue with or without breast scaffolds as an alternative for breast tissue engineering in vivo, and its potential mechanism of angiogenesis in vitro was explored.
Results
Transplantation of hUCMSCs promoted proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) through paracrine mechanism by activating the integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway. Histological examination of grafted fat revealed that the group which received hUCMSCs transplantation had more fat tissue [(93.60 ± 2.40) %] and fewer MAC2+CD206− M1 macrophages [(0.50 ± 0.47) cells/field] compared to the control group [fat tissue (45.42 ± 5.96) and macrophage cells/field (5.00 ± 2.23)]. Moreover, the hUCMSCs- labeled with a tracing dye differentiated into adipocytes and vascular endothelial cells in the adipose tissue. When applied to the tissue-engineered breast with a scaffold, the group treated with hUCMSCs had more adipose tissues and CD31+ cells than the control group.
Conclusions
These results demonstrate that allogeneic hUCMSCs promote the regeneration of adipose tissue and can be used to construct a tissue engineered breast.
All‐liquid molding can be used to transform a liquid into free‐form solid constructs, while maintaining internal fluidity. Traditional biological scaffolds, such as cured pre‐gels, are normally processed in solid state, sacrificing flowability and permeability. However, it is essential to maintain the fluidity of the scaffold to truly mimic the complexity and heterogeneity of natural human tissues. Here, this work molds an aqueous biomaterial ink into liquid building blocks with rigid shapes while preserving internal fluidity. The molded ink blocks for bone‐like vertebrae and cartilaginous‐intervertebral‐disc shapes, are magnetically manipulated to assemble into hierarchical structures as a scaffold for subsequent spinal column tissue growth. It is also possible to join separate ink blocks by interfacial coalescence, different from bridging solid blocks by interfacial fixation. Generally, aqueous biomaterial inks are molded into shapes with high fidelity by the interfacial jamming of alginate surfactants. The molded liquid blocks can be reconfigured using induced magnetic dipoles, that dictated the magnetic assembly behavior of liquid blocks. The implanted spinal column tissue exhibits a biocompatibility based on in vitro seeding and in vivo cultivating results, showing potential physiological function such as bending of the spinal column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.