Fungi are well-known for their abundant supply of metabolites with unrivaled structure and promising bioactivities. Naphthalenones are among these fungal metabolites, that are biosynthesized through the 1,8-dihydroxy-naphthalene polyketide pathway. They revealed a wide spectrum of bioactivities, including phytotoxic, neuro-protective, cytotoxic, antiviral, nematocidal, antimycobacterial, antimalarial, antimicrobial, and anti-inflammatory. The current review emphasizes the reported naphthalenone derivatives produced by various fungal species, including their sources, structures, biosynthesis, and bioactivities in the period from 1972 to 2021. Overall, more than 167 references with 159 metabolites are listed.
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed.
Carpesium abrotanoides L. (Asteraceae) is a medicinal plant with immense therapeutic importance and bioactivities. It is commonly encountered in various Asian regions. It has numerous ethnomedicinal uses for curing diverse ailments such as toothache, stomach ulcer, boils, tonsillitis, bronchitis, bacterial infection, bruises, swelling, virus infection, fever, and amygdalitis, as well as an anthelmintic versus round-, tape-, hook-, and pinworms. Different classes of phytoconstituents such as sesquiterpenes, sesquiterpene dimers, monoterpenes, and nitrogenous compounds have been reported from this plant. These phytoconstituents have proved to possess anti-inflammatory, cytotoxic, antimicrobial, and insecticidal capacities. The present review aims to summarize all published data on C. abrotanoides including traditional uses, phytoconstituents, bioactivities, and toxicological aspects, as well as the synthesis and biosynthesis of its metabolites through an extensive survey on various databases and various publishers. These reported data could draw the attention of various natural-metabolite-interested researchers and medicinal chemists towards the development of this plant and/or its metabolites into medicine for the prevention and treatment of certain illnesses. Despite the diverse traditional uses of C. abrotanoides, there is a need for scientific evidence to support these claims. Clinical trials are also required to further assure these data and validate this plant utilization in treating several diseases.
Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.
Chemotherapy is the most widely advocated method of Schistosome control. However, repeated chemotherapy leads to the emergence of drug-resistant Schistosoma strains. Therefore, efforts to find alternative drugs, especially those of natural origin, have risen globally. Nanoparticles (NPs) have received special interest as efficient drug delivery systems. This work aimed to investigate the anti-schistosomal potential of Zingiber officinale (ginger, Zingiberaceae)-loaded chitosan nanoparticles (GCsNPs) on Schistosoma mansoni experimentally infected mice that were exposed to 80 ± 10 cercariae/mouse. The study groups are: (G1) negative control; (G2) positive control; (G3) praziquantel in a dose of 500 mg/kg/day for two consecutive days; (G4) ginger in a dose of 500 mg/kg treated; (G5) chitosan nanoparticles in a dose 3 mg/kg (G6) GCsNPs in a dose 250 mg/kg; and (G7) GCsNPs in a dose 500 mg/kg. The anti-schistosome potential was assessed using histopathological scanning electron microscopically and immunological parameters. The results showed that there was a significant decrease in cellular granuloma count (p < 0.05) and granuloma diameter (p < 0.001) in all infected treated mice groups, in comparison to the infected non-treated group with the highest reduction in both G3 and G7. SEM of S. mansoni adult worm recovered from G3 showed mild edema of oral and ventral suckers with some peeling and blebs around them, while that recovered from G7 showed abnormal oedematous oral and retracted ventral sucker, edema of the tegument, rupture of many tubercles with vacuolation and complete loss of spines. All infected treated mice groups, in comparison to positive control G2, showed a significant reduction in IL-4, IL-10, and TNF-α levels (p-value < 0.001), especially groups G6 and G7 (p-value < 0.05); both G6 and G7 values were nearer to the normal that indicated recovery of the liver tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.