In the present work, orienting to practicality and functionality beyond original fundamental simulation, we succeeded in fabricating superamphiphobic surfaces, which are super-repellent both to water and oil, upon common engineering metals (zinc, aluminum, iron, and nickel) and their alloys (Zn-Fe alloy and brass) by taking advantage of an electrochemical reaction in perfluorocarboxylic acid solutions. Via control over the chain length, concentration of perfluorocarboxylic acid, and the process time, textured rough structures on different substrates were achieved. The prepared surfaces show superamphiphobicity due to the synergistic effect of their special surface compositions and microscopic structures.
Combining the best features of both inorganic quantum dots and i-motif DNA, a dynamic pH-driven modulation system of photoelectric conversion was realized by making use of their conjugates immobilized on a Au electrode.
Along with the advances in polymer solar cells (PSCs), the accurate evaluation of novel photovoltaic polymers with various band gaps is an important issue that should be concerned, as well as needs to be addressed at various research laboratories in the world. In this work, we have focused on PSCs by employing some of the most efficient and well-known low band gap (LBG) polymers, for instance, PBDTTT-C-T, PBDTBDD, PDPP3T, PTB7-Th, PSBTBT and PBDTTPD, and obtained the corresponding spectral-mismatch factors (MMFs) under various reference cell/solar simulator combinations. Generally, there still exists AE25% spectral error even for a simulator whose spectrum grade is labeled as AAA. The best way to accurately evaluate the power conversion efficiencies (PCEs) of LBG polymers is by choosing a combination of a spectral-matched-silicon-solar-cell (match to LBG polymer's spectral responsivity spectrum) and a Class AAA solar simulator. Furthermore, our results could provide guidance for the accurate measurements of organic molecules, perovskites, and related photovoltaic technologies. † Electronic supplementary information (ESI) available: Additional device fabrication details of LBG polymer/PCBM blends, and absorption spectrum of different photovoltaic polymers. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.