Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.
Over the years, spiking neural P systems (SNPS) have grown into a popular model in membrane computing because of their diverse range of applications. In this paper, we give a comprehensive summary of applications of SNPS and its variants, especially highlighting power systems fault diagnoses with fuzzy reasoning SNPS. We also study the structure and workings of these models, their comparisons along with their advantages and disadvantages. We also study the implementation of these models in hardware. Finally, we discuss some new ideas which can further expand the scope of applications of SNPS models as well as their implementations.
Abstract. This paper proposes a real-observation quantum-inspired evolutionary algorithm (RQEA) to solve a class of globally numerical optimization problems with continuous variables. By introducing a real observation and an evolutionary strategy, suitable for real optimization problems, based on the concept of Q-bit phase, RQEA uses a Q-gate to drive the individuals toward better solutions and eventually toward a single state corresponding to a real number varying between 0 and 1. Experimental results show that RQEA is able to find optimal or closeto-optimal solutions, and is more powerful than conventional real-coded genetic algorithm in terms of fitness, convergence and robustness.
To solve the multi-objective mobile robot path planning in a dangerous environment with dynamic obstacles, this paper proposes a modified membraneinspired algorithm based on particle swarm optimization (mMPSO), which combines membrane systems with particle swarm optimization. In mMPSO, a dynamic double one-level membrane structure is introduced to arrange the particles with various dimensions and perform the communications between particles in different membranes; a point repair algorithm is presented to change an infeasible path into a feasible path; a smoothness algorithm is proposed to remove the redundant information of a feasible path; inspired by the idea of tightening the fishing line, a moving direction adjustment for each node of a path is introduced to enhance the algorithm performance. Extensive experiments conducted in different environments with three kinds of grid models and five kinds of obstacles show the effectiveness and practicality of mMPSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.