The growth in mobile vision applications, coupled with the performance limitations of mobile platforms, has led to a growing need to understand computer vision applications. Computationally intensive mobile vision applications, such as augmented reality or object recognition, place significant performance and power demands on existing embedded platforms, often leading to degraded application quality. With a better understanding of this growing application space, it will be possible to more effectively optimize future embedded platforms. In this work, we introduce and evaluate a custom benchmark suite for mobile embedded vision applications named MEVBench. MEVBench provides a wide range of mobile vision applications such as face detection, feature classification, object tracking and feature extraction. To better understand mobile vision processing characteristics at the architectural level, we analyze single and multithread implementations of many algorithms to evaluate performance, scalability, and memory characteristics. We provide insights into the major areas where architecture can improve the performance of these applications in embedded systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.