[reaction: see text] The pyridineethenyl-substituted tetrathiafulvalene (TTF) compounds, 4-(4-pyridineethenyl)tetrathiafulvalene (1a) and 4,4'(5')-[bis-(4-pyridineethenyl)]tetrathiafulvalene (2a) together with the styryl-substituted TTF compounds, 4-styryltetrathiafulvalene (1b) and 4,4'(5')-bis-styryltetrathiafulvalene (2b), have been designed and synthesized. All these compounds exhibit strong absorption bands in the range of 370 to 550 nm, which are assigned to the intramolecular charge-transfer transition from the HOMO in TTF to the LUMO in the pyridyl or phenyl group. Compared to compounds 1b and 2b, the pyridineethenyl-substituted TTF compounds 1a and 2a show remarkable sensing and coordinating properties to Pb2+. With the addition of micromolar concentrations of Pb2+ to the solution, 1a or 2a displays dramatic changes in the UV-vis absorption spectrum, 1H NMR spectrum, and redox property.
A series of tetrathiafulvalene acetylene derivatives, [TTF-Ctriple bondC-A] [A=C6H4N(CH3)2-4 (1), C6H4OCH3-4 (2), C6H5 (3), C6H4F-4 (4), C6H4NO2-4 (5), C5H4N-2 (6), C5H4N-3 (7), and C5H4N-4 (8)], have been designed and synthesized to provide insight into the nature of the donor-acceptor interaction via a pi-conjugated triple bond. The X-ray crystal structure of [TTF-(Ctriple bondC)-C6H4OCH3-4] (2) reveals that the phenyl ring linked by acetylene is almost coplanar to the plane of TTF with a dihedral angle of 3.6 degrees. The strong intermolecular C-H...O hydrogen bonding was found to direct the molecular helical assemblies with a screw pitch of 5.148 A when viewed along the a-axis. Spectroscopic and electrochemical behaviors of the tetrathiafulvalene acetylene derivatives demonstrate that the TTF unit interacts with the electron-accepting group through the triple bond, thus leading to the intramolecular charge transfer. The pyridine-substituted TTF compounds 6-8 show remarkable sensing and coordinating properties toward Pb2+. Comparison of the spectroscopic and electrochemical properties and the calculation at the B3LYP/6-31G* level available in Gaussian 03 reveals that varying the bridged unit of the TTF-pi-A system from a double bond to a triple bond leads to positive shifts for the first and second oxidation potentials of the TTF moieties, while the extent of intramolecular charge transfer interactions through the pi-conjugated triple bond is smaller than that through the double bond.
A new class of tetrathiafulvalene (TTF)-based microstructures fabricated by coordinative self-assembly has been successfully prepared by a solution process. The morphology of the TTF coordination polymers is readily tuned by the variation of metal ions. Upon incorporation of Pb(2+) and Zn(2+) ions, one-dimensional (1D) wirelike microstructures and spherical polymer particles were achieved, respectively. These results indicate that the coordinative approach pursued in this work, in which the building blocks of 1 are linked in a coordination polymer chain by association with metal ions, is an efficient and versatile approach to produce more mechanically robust micro- and nanometer-sized coordination polymer materials. More interestingly, the neutral coordination polymers are conductive and magnetic at room temperature without external manipulation. Such conductivity is reminiscent of the behavior of the neutral conductive TTF in single crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.