Objectives: There is increasing evidence that intravenously injected neural progenitor cells promote recovery of bladder function in rodents, following contusive spinal cord injury through migrating into the injured spinal cord tissue and differentiating into central nervous system cells. The present study was aimed to clarify whether intravenously transplanted bone marrow stromal cells (BMSCs) could improve lower urinary tract (LUT) function in rats with spinal cord transection (SCT). Methods: A total of 22 rats underwent experimentation in three groups, including group 1-sham operation, group 2 (BMSC)-SCT plus BrdU (5-bromo-2¢-deoxyuridine) labeled BMSCs transplantation at day 9 after SCT, group 3-SCT control. All rats were investigated urodynamically on day 28 after transplantation. Results: BMSCs identified by BrdU immunohistochemistry survived in the injured spinal cord and lumbar level 3-4 (L 3À4 ). Voiding pressure, episodes of non-voiding contractions and residual urine volumes were significantly decreased in BMSC rats, compared with the controls. Bladder capacity was similar in both groups. In four out of eight BMSC rats and one out of seven controls, the tonic and bursting external urethral sphincter electromyographic activity were detected during cystometry. Silent periods during bursting were shorter and activity periods were longer in BMSC rats compared with sham rats. INTRODUCTIONThe main functions of the lower urinary tract (LUT) to store and periodically release urine are dependent upon neural circuits located in the brain, spinal cord and peripheral ganglia. 1,2 Spinal cord injury (SCI) above the lumbosacral level interrupts this coordination between the bladder and the striated sphincter, leading to non-voiding contractions (NVCs) and detrusor-sphincter dyssynergia, which impedes voiding and leads to large residual urine volume (RUV). 3 In the rats, micturition-associated bursting external urethral sphincter (EUS) activity, characterized by alternating bursts of EUS activity and relaxation (silent periods (SP)), is lost after SCI and has been reported to be replaced by tonic, dyssynergic activity. 4 As the mature central nervous system cannot generate new neurons and glial cells, bladder functional recovery is limited following SCI. However, recent studies suggest that transplanted neural progenitor cells promote recovery of the bladder function through regeneration of the injury site. [5][6][7][8] In most of these studies, stem cells have been injected into the lesion directly with a needle, 5,7,8 carrying the risk of further injury to the spinal cord. Otherwise, these studies did not examine the changes of EUS activity in the spinal injured rats after cells transplantation.
BackgroundIntra-articular adhesion is one of the common complications of post knee surgery and injury. The formation of joint adhesion can lead to serious dysfunction. Rosuvastatin (ROS) is a new 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, with multiple biological effects. In our study, the object was to evaluate the effectiveness of ROS in the prevention of post-operative knee adhesion in rats.Material/MethodsFemoral condyle exposing surgery was performed on 45 healthy Sprague Dawley rats. Gelatin sponges soaked with 20 mg/kg of ROS, 10 mg/kg of ROS, or saline were used to cover the surgical site. The post-operative knee joints were fixed in a flexed position with micro Kirschner wires for four weeks. ROS effectiveness for treating intra-articular adhesion was determined with visual score evaluation, hydroxyproline content, histological analyses, immunohistochemistry, and inflammatory and vascular endothelial growth factors expression.ResultsThe animals’ recovery was stable after surgery. The hydroxyproline content, visual score, and inflammatory vascular growth factors expression levels suggested that, compared with the control group, the ROS treatment groups showed better outcomes. ROS prevented joint adhesion formation, collagen deposition, and vascularization at the surgical site, and also inhibited inflammatory activity post-operatively. Compared with the 10 mg/kg ROS group, the 20 mg/kg ROS group showed significantly better outcomes.ConclusionsThe local application of ROS reduced intra-articular adhesion formation, collagen deposition, and vascularization at the surgical site, and inhibited inflammatory activity post-operatively. These results suggested optimal concentration of ROS to be 20 mg/kg.
Perineal US parameters show good correlations with UDS parameters. Ultrasonography is better tolerated than UDS and provides additional morphologic data. Perineal US could facilitate the diagnosis of urge-predominant MUI.
Spinal cord injury (SCI) is a traumatic injury to the spinal cord which is not a consequence of the disease. Mesenchymal stem cells (MSCs) have gradually become one of the most used stem cells in research and clinic trial. Based on the previous reports employed the cells ranged from 4 • 105 to 1 • 106, the present study was performed to figure out the best number of MSCs for transplantation of the chronic SCI. Magnetic nanoparticles were used for proving the precise transplantation strategy. Using magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), diffusion tensor tractography (DTT), and behavior testing evaluations, we focused the effect of varying numbers of MSCs on reducing lesion cavity and post–traumatic syrinx formation, suppressing glial scar formation, enhancing neuronal fibers remodeling, promoting axonal regeneration and sprouting, improving vascularization, ameliorating the neuronal factors expressional level, and function improvement. Magnetic nanoparticles were precisely transplanted into the post–traumatic syrinx (PTS). MSCs can restore function after chronic SCI through stimulating the regeneration and sprouting of the axons, reducing the formation of PTS. The effect of MSCs on PTS management and functional improvement post chronic SCI was cell number–dependent, and within the range of 4 • 105 to 1 • 106, 1 • 106 cells were proved to be the best dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.