Single-crystalline AlN nanostructures, such as thin films, nanoneedles, nanocolumns, and nanowires, depending on the controlled gas-flow ratio, are synthesized by halide vapor-phase epitaxy (HVPE). In comparison with a typical vapor/ liquid/solid (VLS) mechanism for the growth of nanowires, well-aligned AlN nanorod arrays with diameters below 20 nm are grown on a catalyst-free Si substrate though a vapor/solid (VS) mechanism. Their structural and optical properties are measured by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). In particular, AlN nanorods exhibit an excellent field emission property with a low turn-on field of 2.25 V mm
À1. The field enhancement factor is estimated to be about 784 due to well-aligned, needle-shaped, AlN nanorods.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)-CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL-CNT composite paper. Cyclic voltammograms revealed that the GOx/CL-CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.