SARS‐CoV‐2 is a novel human coronavirus responsible for the Coronavirus disease 2019 (COVID‐19) pandemic. Pneumonia and acute respiratory distress syndrome are the major complications of COVID‐19. SARS‐CoV‐2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses later in the disease. These uncontrolled inflammatory responses may lead to local and systemic tissue damage. In patients with severe COVID‐19, eosinopenia and lymphopenia with a severe reduction in the frequency of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells are a common feature. COVID‐19 severity hinges on the development of cytokine storm characterized by elevated serum levels of pro‐inflammatory cytokines. Moreover, IgG‐, IgM‐ and IgA‐specific antibodies against SARS‐CoV‐2 can be detected in most patients, along with the viral RNA, forming the basis for assays that aid in patient diagnosis. Elucidating the immunopathological outcomes due to COVID‐19 could provide potential targets for immunotherapy and are important for choosing the best clinical management by consultants. Currently, along with standard supportive care, therapeutic approaches to COVID‐19 treatment involve the use of antiviral agents that interfere with the SARS‐CoV‐2 lifecycle to prevent further viral replication and utilizing immunomodulators to dampen the immune system in order to prevent cytokine storm and tissue damage. While current therapeutic options vary in efficacy, there are several molecules that were either shown to be effective against other viruses such as HIV or show promise in vitro that could be added to the growing arsenal of agents used to control COVID‐19 severity and spread.
Coumarins and their derivatives are receiving increasing attention due to numerous biochemical and pharmacological applications. In this study, a series of novel coumarin-1,2,3-triazole-acetamide hybrids was tested against some metabolic enzymes including α-glycosidase (α-Gly), α-amylase (α-Amy), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), human carbonic anhydrase I (hCA I), and hCA II. The new coumarin-1,2,3-triazole-acetamide hybrids showed K i values in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.