The use of highly reflective "cool" roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)'s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. A second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio.Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 -3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type-factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile-revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and metal products. pending measurement of aged solar reflectance. The appropriate value of soiling resistance varies by product type and is selected to attain some desired overprediction rate for the formula. The correlations for shingle products presented in this paper should not be used to predict aged solar reflectance or estimate provisional aged solar reflectance because the data set is too small and too limited in range of initial solar reflectance.5/47
Raising the albedo (solar reflectance) of streets can lower outside air temperature, reduce building energy use, and improve air quality in cities. However, the production and installation of pavement maintenance and rehabilitation treatments with enhanced albedo ("cool" pavements) may entail more or less energy consumption and carbon emission that of less-reflective treatments. We developed several case studies in which a cool surface treatment is substituted for a more typical treatment (that is, a cool technology is selected instead of a more typical technology). We then assessed over a 50-year analysis period the changes in primary energy demand (PED, excluding feedstock energy) and global warming potential (GWP, meaning carbon dioxide equivalent) in Los Angeles and Fresno, California. The analysis considers two stages of the pavement life cycle: materials and construction (MAC), comprising material production, transport, and construction; and use, scoped as the influence of pavement albedo on cooling, heating, and lighting energy consumption in buildings. In Los Angeles, substituting a styrene acrylate reflective coating or a chip seal for a slurry seal in routine maintenance, or a bonded concrete overlay on asphalt (BCOA) without supplementary cementitious materials (SCM) for mill-and-fill asphalt concrete in conventional or long-life rehabilitation, induced MAC-stage PED and GWP penalties that substantially exceeded use-stage savings, primarily due to material production. Modified rehabilitation cases in which SCM comprised 21% to 50% of the BCOA's total cementitious content by mass (portland cement + SCM) yielded smaller total (MAC + use) PED and GWP penalties, or even total PED and GWP savings. Trends in Fresno were similar, with some differences in GWP outcomes that result from Fresno's longer heating season. The modified rehabilitation cases using BCOA with high SCM content yielded total GWP savings in each city; all other cases yielded total GWP penalties. The magnitude of the one-time GWP offset offered by global cooling from the increased albedo itself always, and sometimes greatly, exceeded the 50-year total GWP penalty or savings. In Los Angeles, the annual building conditioning (cooling + heating) PED and energy cost savings intensities yielded by cool pavements were each about an order of magnitude smaller than the corresponding savings from cool roofs.
To identify and characterize localized urban heat-and cool-island signals embedded within the temperature field of a large urban-climate archipelago, fine-resolution simulations with a modified urbanized version of the WRF meteorological model were carried out as basis for siting fixed weather monitors and designing mobile-observation transects. The goal was to characterize variations in urban heat during summer in Los Angeles, California. Air temperatures measured with a shielded sensor mounted atop an automobile in the summers of 2016 and 2017 were compared to model output and also correlated to surface physical properties focusing on neighborhood-scale albedo and vegetation canopy cover. The study modeled and measured the temperature response to variations in surface properties that already exist in the real world, i.e., realistic variations in albedo and canopy cover that are attainable through current building and urban design practices. The simulated along-transect temperature from a modified urbanized WRF model was compared to the along-transect observed temperature from 15 mobile traverses in one area near downtown Los Angeles and another in an inland basin (San Fernando Valley). The observed transect temperature was also correlated to surface physical properties characterizations that were developed for input to the model. Both comparisons were favorable, suggesting that (1) the model can reliably be used in siting fixed weather stations and designing mobile-transect routes to characterize urban heat and (2) that except for a few cases with opposite co-varying influences, the correlations between observed temperature and albedo and between observed temperature and canopy cover were each negative, ranging from −1.0 to −9.0 • C per 0.1 increase in albedo and from −0.1 to −2.2 • C per 0.1 increase in canopy cover. Observational data from the analysis domains pointed to a wind speed threshold of 3 m/s. Below this threshold the variations in air temperature could be explained by land use and surface properties within a 500-m radius of each observation point. Above the threshold, air temperature was influenced by the properties of the surface within a 1-km upwind fetch. Of relevance to policy recommendations, the study demonstrates the significant real-world cooling effects of increasing urban albedo and vegetation canopy cover. Based on correlations between the observed temperature (from mobile transects) and surface physical properties in the study domains, the analysis shows that neighborhood-scale (500-m) cooling of up to 2.8 • C during the daytime can be achieved by increasing albedo. A neighborhood can also be cooled by up to 2.3 • C during the day and up to 3.3 • C at night by increasing canopy cover. The analysis also demonstrates the suitability of using fine-resolution meteorological models to design mobile-transect routes or site-fixed weather monitors in order to
REVISED DRAFT 2015-7-7 Soiling of building envelope surfaces-Part III
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.